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Executive Summary

This report describes the research performed in the two year period be-

tween June 1988 and May 1990, under the NASA Johnson Space Center

Grant NAG 9-9.75 to Texas A&:M University. The research results and

findings of the two major tasks of the project are included. Namely, the

report details the design and evaluation of an Attitude Control/Momentum

Management System for highly asymmetric spacecraft configurations, and

the preliminary development and application of a nonlinear control sys-

tem design methodology for tracking control of uncertain systems, such as

spacecraft payload pointing systems. Control issues relevant to both linear

and nonlinear rigid-body spacecraft dynamics are addressed, whereas any

structural flexibilities are not taken into consideration.

Results from the first task indicate that certain commonly used sim-

plifications in the equations of motions result in unstable attitude control

systems, when used for highly asymmetric spacecraft configurations. An ap-

proach is suggested circumventing this problem. Additionally, even though

preliminary results from the second task are encouraging, the proposed

nonlinear control system design method requires further investigation prior

to its application and use as an effective payload pointing system design

technique.
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Project Description



Chapter 1

Overview of the Project

In Part II of this report an attitude control/momentum management (ACMM)

system is proposed for large angle torque-equilibrium-attitude (TEA) con-

figurations of the Space Station Freedom (SSF). The fully coupled equa-

tions of motion for the SSF are linearized around an arbitrary TEA and

the linear-quadratic-regulator (LQR) method with pole placement is used

to synthesize the full-state feedback gains. The actuators used are control

moment gyros (CMGs) and both the gyroscopic and the gravity gradient

torques are utilized in stabilizing the spacecraft, in the presence of exter-

nal cyclic and secular disturbances. As it is anticipated during the earlier

flights of the SSF and during some of the Mobile Remote Manipulator Sys-

tem (MRMS) operations, the contributions of the cross-p_oducts of inertia

on the overall spacecraft attitude determination will be significant, result-

ing in large pitch angle TEAs. Therefore, a fully coupled control system

will be required for these earlier flights and for certain modes of operation.

The proposed gain-scheduled controller can be utilized for attitude control
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CHAPTER I. OVERVIEW OF THE PROJECT 1-2

and momentum management of any flight during the assembly sequence

once the CMGs are available and/or during the MRMS operations. As

shown in this paper, for certain SSF configurations characterized by large

pitch angle TEAs, failure to include the contributions of the cross-products

of the inertia terms in the linearization of the SSF dynamics results in the

design of unstable controllers. These instabilities can only be observed on

the nonlinear simulator, with the linearized closed-loop system appearing

stable. The proposed gain-scheduled controller has been tested with iner-

tia matrix element variations from Flight #3 (MB3) to Assembly Complete

(AC) configurations, corresponding to up to 1600% changes in some cross-

inertia terms. Computer simulation results indicate that because of the

slowly changing dynamics of the SSF, a gain-scheduled controller provides

satisfactory form of adaptation, as compared to other adaptive schemes,

requiring more complex control architectures.

Part III of this report is focused on servo-tracking in the context of the

ability to follow a desired output, within a prespecified error bound, over

its entire duration; that is, to obtain a closed-loop system which has the

ability to track a reference input vector while rejecting a class of external

disturbances, to the extent required by the error bound. This type of

tracking is referred to as tracking in the sense of spheres. It has been shown

in the literature that a solution to this tracking problem may be obtained by

a quantitative pole placement (QPP) approach. In particular, a nonlinear

observer-based state feedback controller will guarantee the desired tracking

performance, provided state feedback gains can be found such that a specific

induced norm of a linear closed-loop operator can be made su_fflcient_ly small.



CHAPTER 1. OVERVIEW OF THE PROJECT 1-3

In this report a systematic procedure is given for solving the QPP prob-

lem when the induced norm is the Loo - norm. In particular, a Lute type

system is considered with the input and output spheres measured with re-

spect to the Loo - norm, and an algorithm is developed on the basis of

mAnimizing the Hoo - norm of a linear closed-loop operator for solving the

QPP problem. Relevant design criteria are derived by first embedding the

problem in the L2 function space, leading to an Hoo - minimization problem

which is followed by an exponential weighting technique for estimating the

tracking error bounds in terms of Loo - norms. The approach to this prob-

lem is based on fixed-point techniques, the multivariable circle criterion,

and Hoo-optimal control. The controller gains satisfying the design criteria

and the QPP are obtained by solving a Riccati equation and a Lyapunov

equation.

The controller synthesis methodology for servo-tracking in uncertain,

nonlinear systems of the Lure type presented in the report is applied to a

simple single input-single output, nonlinear, uncertain system and a two

degree of freedom robotic manipulator. The manipulator tip is required

to carry an unknown payload, lying between a given upper and a lower

bound, along a semi-circular trajectory to a prespecified accuracy. The

resulting controller resembles a robust computed torque arrangement with

the feedback gains chosen specifically to provide the necessary reduction

in sensitivity due to possible variations in the payload. Simulations results

confirm the effectiveness of the synthesis technique.



Part II
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Chapter 2

Introduction

The Space Station Freedom (SSF) will be the first permanently manned

spacecraft to be assembled and operated by NASA. Currently, the schedule

calls for the First Element Launch (FEL) in March of 1995 and the Assem-

bly Complete (AC) configuration towards the last quarter of 1999. Two of

the planned uses of the SSF are as a transportation node for future space

missions, such as the Lunar and Mars Initiative, and as an experimental

facility for zero-gravity materials processing and life sciences research. As a

result of these program objectives, there is a need for the SSF environment

to be effectively controlled. That is attitude control during assembly, nor-

real flight and other operating conditions, such as operation of the Mobile

Remote Manipulator System (MRMS).

Even though during the first few flights of the SSF reaction jets will

be used as actuators, Control-Moment-Gyros (CMGs) will be utilized as

the primary actuating devices for most of the assembly sequence and sub-

sequent man-tended operations. Additionally, the gravity gradient torque
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will be used to unload the spacecraft momentum from the CMGs and bring

it to its nominal level. Previous studies have presented the trade-offs in se-

lecting the various momentum management techniques [1]. In the current

study, the momentum management approach proposed in reference [1] is

used, however, only the attitude hold mode of the SSF operation is exam-

ined. The designed control law uses proportional-derivative (PD) for atti-

tude control and proportional-integral (PI) for momentum management.

In addressing the attitude hold of the SSF, no explicit design specifi-

cations are placed upon the control system, other than the desired closed-

loop system stability. The ultimate objective of this work is the application

of direct nonlinear control system design techniques to the SSF Attitude

Control/Momentum Management (ACMM) system. In order, however, to

determine the benefits, if any, of using a more complex nonlinear controller,

a gain-scheduled ACMM system is designed for comparison purposes. The

gain-scheduled control system, a simplified and open-loop form of adaptive

control, will allow attitude control and momentum management through-

out the entire operating regime of the SSF dynamics. In order to design

a gain-scheduled controller, however, it is necessary to have the linearized

system dynamics at various operating points. These will then be used along

with linear control synthesis techniques to arrive at the various gain sets

which will in turn be fitted to obtain an analytic form for the gain matrix

elements as a function of a system variable, called the scheduling variable.

This paper addresses the linearization of the equations of motion around

an arbitrary operating point, which in this case is the torque-equilibrium-

attitude (TEA). It is shown that for some SSF configurations, resulting
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in large pitch angle TEAs, it is necessary to consider the full coupling of

the roll/yaw with the pitch equations, through the contributions of the

cross-products of inertia terms. Computer simulations show that use of

linearized models without the roll/yaw and pitch coupling in the design of

the ACMM system, result in closed-loop systems that exhibit instabilities

for large pitch angle TEA configurations of the SSF. Such configurations

will be encountered during the assembly sequence and during some of the

MRMS operations [2].

Part II of this report is organized in the following manner. Chapter 3

presents the complete governing equations of motion for the SSF under the

assumption of a single rigid body. Following, in chapter 4 is the derivation

of the linearized equations of motion for an arbitrary TEA resulting from

possible asymmetric configurations where the control axes are misa]igned

with the body axes. Chapter 5 presents the relevant issues in the design of

an ACMM control law, as well as the Linear Quadratic Regulator (LQR)

used in this study for the various SSF configurations. The section concludes

with the gain-scheduling approach used in this study. Chapter 6 includes

some of the simulation results necessary to substantiate the major points

of this study. Chapter 7 summarizes the findings of this study with some

concluding remarks.



Chapter 3

Nonlinear Dynamics of the

Space-Station Rigid-Body

Motion

The SSF is expected to operate in a circular orbit at an altitude of approx-

imately 200 nm, with a period of approximately 5700 seconds. In reality

SSF represents a flexible multi-body system, subject to various external

disturbances which may not be accurately known. During the assembly

sequence the spacecraft will undergo increasingly complex modifications as

a results of the attached solar panels, thermal radiators, payloads, pressur-

ized modules, etc. As a result, there will be an increased interaction among

the various structural components and the spacecraft guidance, navigation

and control system. In order to guarantee safe and reliable operation, the

ACMM system should be able to keep the attitude excursions within some,

yet unspecified, bounds while using only the available control torque and
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without saturating the CMGs. Therefore, there is a need to systematically

design ACMM systems which will have predictable and reliable operation.

Assuming single rigid-body motion, the nonlinear equations of motion

for the gravity gradient stabilized SSF, with body-fixed control axes, can

be expressed as follows [1,3]:

I _(t) = rg_,o(t) + rgg(t) + (w(t) - u(t)) (3.1)

where w(t) = [wl(t), w2(t), w3(t)] T are the body-axis components of the

absolute angular velocity of the spacecraft, with the subscripts (1,2,3) rep-

resenting the (roll, pitch, yaw) axes, respectively. The matrix I contains

the principal moments of inertia, I,, i = 1,2, 3, as well as the products of

inertia/_j, i = 1,2,3 and j = 1,2,3 with i # j. It is also assumed that

Iij = Iji, i,j = 1,2,3. The first two terms on the right-hand-side of

equation (3.1) represent the gyroscopic and gravity gradient torques. The

vectors w(t) = [w,(t), w2(t), w3(t)] r and u(t) = [ul(t), u2(t), u3(t)] T

represent the body-axis components of the external disturbance torque and

the CMG control torque, respectively.

The gyroscopic torque term is expressed in terms of the abso]ute angular

velocities as follows:

=

0

-  3(t)

-.,3(t)

0 --031 (t)

0.)1 (t) 0

/11 I12 /13

/21 /22 /_3

/31 /32 /33  3(t)
(3.2)

The gravity gradient torque term is expressed in terms of the body-axis
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angles with respect to LVLH as:

rg_(t) = 3n2

0 -ca(t) c2(t)

ca(t) 0 -c,(t)

-c2(t) _,(t) 0

L1 /12 La

/21 /_2 /23

/31 /3_ /33

_,(t)

cz(t)

_3(t)

(3.3)

where n is the SSF orbital rate of 0.0011 rad/sec and the components of

the nadir vector c(t) are given by the following expressions:

_ (t ) - - _i_(o_(_))co_(O3(t ))

c2(t) - cos(O_(t))sin(O2(t))sin(Oa(t))+ sin(Ol(t))cos(O2(t))

ca(t)--sin(Oa(t))sin(O2(t))sin(Oa(t)) + cos(Ol(t))cos(O2(t))

(3.4)

The attitude kinematics express the relation between the absolute an-

gular velocities and the body-axis angular rates with respect to LVLH, as

follows:

O(t) = f(O(t))w(t) + q (3.5)

where

f(o(t))

and

cos(Oa(t))

1 --cos(Oa(t))sin(Oa(t))

0 _o_(0,(_))

0 si_(O_(t))_os(O_(t))

sin( O_(t))sin( Oa(t ))

-si_(O_(_))

_os(O_(O)cos(O_(t ))
(3.6)

q

0

Tt

0

o(_)

o1(_)

o,(t)

oa(_)

(3.7)

The CMG dynamics are expressed in terms of the body-axis components

of the CMG momentum and the external control torque u(t) applied by the
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ACMM system as follows:

h(t) = u(0 h(t) (3.S)

The general form of the external disturbance torque used in this study

is as proposed in references [1,3]. That is:

wi(t) = (Bias), + Aisin(nt) + Bisin(2nt) (3.9)

where i = 1, 2, 3 for roll, pitch and yaw, respectively.



Chapter 4

Derivation of the Linearized

Equations of Motion

The equations of motion presented in the previous section are highly non-

linear and therefore not suitable for control system design. In order to allow

use of linear control system design techniques some form of linearization

must be performed. There have been successful applications of the small

angle linearized and the roll/yaw and pitch decoupled equations of motion

for the attitude control and momentum management of the SSF [1,4]. How-

ever, for configurations resulting to large angle TEAs the applicability of

this approximation will be extremely limited [3]. An alternate approach in

resolving this problem would be the linearization of the equations of motion

around an arbitrary TEA, without decoupling the pitch from the roll/yaw

equations of motion. This is justified on the basis that the large angle TEA

configurations of the SSF result from the misalignment of the control axes

with principal body axes. Therefore, neglecting the cross-inertia terms for

4-1



CHAPTER 4. LINEARIZED EQUATIONS 4-2

large angle TEA configurations would result in highly erroneous linearized

models.

4.1 Determination of the Torque Equilibrium

Attitude

In order to perform linearization of equations (3.1), (3.5) and (3.8) around

an arbitrary TEA, it is necessary to estimate the average TEA of a given

configuration over an orbit, after equilibrium conditions have been reached.

Assuming that (0r, 02, 0_) represent the TEA (or the average value of TEA)

at steady-state for a given configuration, these angles can be calculated

using the following set of nonlinear equations:

rgvro(W* ) + rag(0* ) + Bias = 0 (4.1)

where w* is the absolute angular velocity of the spacecraft evaluated at 9*,

and

f(8*) ca* + q = 0 (4.2)

where the function t"(0) and q are defined in the previous section. The

latter of these two system of equations can be used to solve for w* in terms

of 8" obtaining the following relations:

w" = -ncos(O;)cos(O;) (4.3)

o;)cos(O;)

Substitution of these expressions into equation (4.1), reveals a system
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of three nonlinear equations which, for a given inertia matrix I, could be

solved to estimate the average value of the TEA.

4.2 Linearization of the Attitude Kinemat-

ics

The attitude kinematics, expressed by equation (3.5), can be linearized

around (8", w') obtaining the following linearized attitude kinematics:

i

co40;) 0
m 0

-n(cos(0_)) _

co_(O_)

0

0

aol(t) +

sin(O;)sin(O_)

-_in(O;)

n

_o1(_)+ -_i_(o_)

o

-co_(O_)_i,_(o_)

co_(O_)

sin(O_)cos(O;)

_o_(_)+

5w2(t) +(4.4)

where, fori = 1, 2, 3,

60i(t) = Oi(t) - O_ (4.5)

(_wi(t) = wi(t) - w_' (4.6)

represent the perturbations of the attitude and of the absolute angular

velocities from the TEA and from the angular velocities corresponding to

the TEA, respectively.
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4.3 Linearization of the Gyroscopic Torque

The gyroscopic torque term, given by equation (3.2), can be linearized as

follows:

(4.7)

where each of the partial derivatives in the above equation, evaluated at

O(t) = 8", depends upon the elements of the inertia matrix, I, and the

TEA vector, 0".

The partial derivatives of the gyroscopic torque term, with respect to

the absolute angular velocity of the spacecraft, are given by the following

expressions:

0wgvr
m n

Owl

- I_2sin(Of)cos(O_) - Iaacos(O;)cos(O_)

(4.s)

-" --n

-2r_cos(O;)¢os(O;)- t,_s_,_(o;)+ (z_- r_)s_r_(O;)cos(O;)

21_os(O;)cos(O_)- x.s_n(o;)¢os(O_)+ (x_- h_)sin(O;)
(4.9)

B --n

[ 1rain(o;)- 2h_si,_(o;)_os(O;)+ (h=- _)_os(O;)cos(O;)
-I12cos(O;)cos(O;) + 2Ilas, (01)cos(03) + (I33 - I_a)sin(O;)

I_3cos( O; )cos(O;) - I2asin( O; )

(4.10)
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4.4 Linearization of the

Torque

Gravity Gradient

The gravity gradient torque term, given by equation (3.3), can be linearized

as follows:

Argg(t) = { 0vg, . _,f02(t) O_'g,-_-_01(t) + + -b-_-_03(t)} (4.11/

where each of the partial derivatives in the above equation, evaluated at

0(t) - 8", depends upon the elements of the inertia matrix, I, and the TEA

vector, 8*. The elements of the vectors containing the partial derivatives of

the gravity gradient torque with respect to the spacecraft attitude angles

are given by the following expressions:

(-I_2AI + I_3B_)C_ + (52- I33)(A_ - B_)- 4123A_BI
O%g

0t_l - -3n2 (/11 - I33)A1C1 + I12(B_ - A_) + 2I_3A, B1

{(I22 - I12)B_ + I23A_} CI + I13(g_ - B21) + 2I_2A_B1

(4.12)
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-/33(BIB2 + AIA2) - 2123(A2B, + AIB2)

+2Ia3(C_C2 + A2Ba) + I23(A,62 + CAB2)

+I13(AxA2 - BxB2) + 2I_2(A, B2 - C, C2)

where

A 1 =

B1 =

C1

(I22 - I33)(A, A3 - B, B3) - II2(A3C1 - B_C3)

(I_ - I_a)(A3C_ - B, C3) - I12(AIA3 - B, B3)

(Ila --/22)(AxC3 + B3C,) + I23(BIC3 - A3Cx)

-2123(AaB_ + A_B3) - I_3(B3C_ + A_ C3)

+2I_3(A3Ba + CIC3) + I23(A_C3 + B3C_)

+I13(B_B3 + AaA3) + 2I_:(A1B3 - C_C3)

cos(O;)sin( o;)si,_(o;) + si,_(o;)cos(o;)

sin( o_)sin(O;)sin(O;) -- cos(O1)cos(O_)

si,_(o_)cos(0;)

4-6

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

A2 = sin(O_)cos(O_)sin(O;)+ cos(O;)sin(O_)

B2 = -cos(O_)cos(O_)sin(O_)+ sin(O1)sin(O_)

c_ = cos(Oi)cos(O;)

(4.1s)

(4.19)

(4.20)

A3 = sin(O_)sin(O;)cos(O_)

B_ = -cos(O;)si,_(O;)cos(O;)

C_ = -s;_(o;)s;_(o;)

(4.21)

(4.22)

(4.2a)
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4.5 Linearized System Equations

4-7

The above equations can now be assembled to form the overall linearized

dynamics for the rigid-body motion of the SSF in the vicinity of an arbitrary

TEA.

4.5.1 Orbital Dynamics/Kinematics Equations

The following three dimensional vector definitions are introduced for the

partial derivative terms of the external torques to simplify the mathematical

form of the final equations:

ri _ 0z'gy, (4.24)
9Y r _0.) i

• Ovgg (4.25)
% - 00_

Each of the components of the above vectors correspond to the roll, pitch

and yaw components of the external torques. Following the standard formu-

lation [1,3,4,6], the following state vector is defined for the orbital dynamics

and the kinematics, to be used for control system design purposes:

xl(t) = [,_l(t), 0_(t), *_3(_),,61(t), ,o_(t), 6e3(t)]_ (4.26)

In order to eliminate 5w2(t) and substitute (_2(t) in the system equations,

the kinematic relation for (92(t) is substituted in the orbital dynamics. The

overall linearized orbital dynamics/kinematics then take the following form:

El ±,(t) = A1 x,(t) Jr B, u(t) + B2 w(t) (4.27)

where xl(t) is given by equation (4.26) and the matrices E_, A1, B1 and

B2 are as follows:



CHAPTER 4. LINEARIZED EQUATIONS 4-8

E1

cos(O;)

Xllcos(e;) I,:o,(e_ )

O"hlcos(1) x2_cos(e;)

O* O*51cos(1) x3:cos( 3)

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

Xl:os(O_)+I1:i_(o;)
O*I_:o4 1) +h:in(O;)

0

0

0

0

0

1

_2nsin(8_)

I=nsin(o_)

(4.28)

tl
cos(O;)

1 *

1 *

cos(O_)

0

0

2 I

2 *ra_(2)cos(O3)
2 *,a .(3)co403)

-sin(O;)cos(O;)

cos(O[)

sin(O;)cos(O )
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% (1)_o4o;) + ,-],,_(1)_i,_(o;)

r_u,(3)cos(O_) + r]u,(3)sin(O; )

0

0

1

rL(1)cos(O;)

rL(2)cos(O;)

_L(3)co4O_)
0

0

-ncos(O;)cos(O_)

v]g(1)cos( Oa) "rff.(1)cos( O1) + v_g (1)nsin( O_ )

_L(3)co40;) ,-_.(3)_os(O;)+ ,-L(3),_in(o;)
0 ncos(O_)_-('_"(°;))_

0 0

0 nsin(O_)sin(O_)

(4.29)

B1 _--

I00000

010000

001000

000000

000000

000000

, B_ = -B1 (4.30)
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4.5.2 CMG Dynamic Equations

In addition to the above linearizations, the CMG dynamics can also be

linearized as follows:

h(t) = u(0-

0 w02 3 02 2

* 0 *023 --021

-02; 02; 0

h(t) (4.31)

where the vector h(t) represents deviations of the CMG momentum from

equilibrium conditions and where the vector w* is given by equation (4.3)

in terms of the TEA. As both the CMG momentum and its integral will be

used in the feedback controller, the following state vector is defined for the

CMGs:

ha(t)] T (4.32)

Then the standard state-space form for the CMG dynamics becomes:

±2(t) = A2 x2(t) + B2u(t) (4.33)

where x2(t) is given by equation (4.32) and the matrix A2 is as follows:

A2 --

o nsi_(o;)co4O;) nco_(O;)co4O;)

-,_,i,_(o;)co_(O;) o -_i_(o;)

_o_(0;)cos(0;) ._in(o;) o
1 0 0

0 1 0

0 0 1
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0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

(4.34)

4.5.3 Disturbance Rejection Filter Equations

As the frequencies of the external disturbances are known, the following

disturbance rejection filters (DRFs) can be used for asymptotic rejection

[1]:

51(t) + n 2al(t) = hi(t) (4.35)

&2(t) + n2_:(t) = _2(t) (4.36)

&3(t) + n 2_3(t) = O3(t) (4.37)

fil(_) -_- (2rt)2fll(t) = hi(t) (4.38)

fl2(t) + (2n)2f12(t) = 02(t) (4.39)

]_3(t) + (2n)2/33(t) = 83(t) (4.40)

where, ai(t), fli(t) are the filter states with arbitrary initial conditions. It

is worth mentioning that the above filters are for attitude hold, only. If

momentum hold is desired then a separate set of DRFs should be designed

with inputs h,(t), h2(t), 83(t). The reasons for not using 81(t) or h3(t) in

the DRFs are given in reference [1]. The above equations can be expressed

in the following state-space form:

:X3(t) = A3 x3(t) + A4 xl(t) + As x2(t) (4.41)
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where X3(t) is given by:

x3(t) =

IT

and the matrices A_, A4 and A5 are as follows:

A3 =

0 -n 2 0 0 0 0

1 0 0 0 0 0

0 0 0 -n 2 0 0

0 0 1 0 0 0

0 0 0 0 0 -n 2

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(4.42)
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A4 m.

A5 --

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 -4n 2 0

1 0

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 -4n 2 0 0

1 0 0 0

0 0 0 -4n 2

0 0 1 0

000000000000

000000000000

000000000000

000000000000

001000000100

000010000001

100000100000

000000000000

000000000000

000000000000

000000000000

000000000000

T

T

(4.43)

(4.44)

(4.45)
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The system of equations (4.27), (4.33) and (4.41) can now be trans-

formed into the following state-space form:

x(t) = Ax(t)+ Bu(t)

where the 24th order state vector is:

,,1(_)

,,(t) = ,,_(_)

,,3(t)

and the system matrices A (24

t

× 24), B (24 ×

El-1 A1 0 0

0 A2 0

A4 A5 A3

+ Gw(t) (4.46)

(4.47)

3), andG(24 × 3) are:

(4.48)

n

Ei-IB1

B2

0

(4.49)

Ei-lB2

G = 0 (4.50)

0

with the rest of the submatrices previously defined and'dependent upon

the specific value of the estimated TEA vector. By setting 8,." = 0 for

i = 1, 2,3 and I_i = 0 for i _ j, in equation (4.46), the small-angle

linearized and the roll/yaw and pitch decoupled SSF models are obtained,

respectively.



Chapter 5

Design of the Attitude

Control/Momentum

Management System

The dynamic system described by equation (4.46) is used to design an

ACMM system. The disturbance rejection filters proposed in reference

[1] are used to accomplish either attitude or momentum hold, depending

upon the desired mode of operation. As mentioned earlier, however, only

attitude hold is examined in this study. The results presented in this paper

are equally applicable to the momentum hold mode, as the only change

occurs in the input variables to the DRFs.

5-1
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5.1 Control System Architecture

The overall architecture of the investigated ACMM system is shown in Fig-

ure 5.1. The controller is composed of two gain-scheduled control laws. One

for attitude control and momentum management, and the other for rejec-

tion of the environmental disturbances. Both control laws are scheduled

using the estimated average TEA as the scheduling variable. The input

signals to the ACMM controller are the angles and the angular rates, the

CMG momentum and the momentum build-up, i.e. the momentum inte-

gral, and an estimate of the average SSF TEA based upon estimates of

the available mass properties. The input to the DRFs are the angle and

momentum vectors. However, as at most three independent variables can

be simulaneously controlled, either the vector (h_(t), 02(t), 03(t)) or the vec-

tor (hl(t),h2(t),_3(t)) is used as input to the DRFs, depending upon the

desired operating mode of the ACMM system.

The use of the TEA estimate in the control law is necessary because of

the inadequacy of the linear control system design tools to account for the

controller gain variations with changing inertia matrix elements. The static

calculation involved in obtaining the TEA estimate could be performed off-

line, with table look-ups used during actual operation. It is assumed that

a separate module provides on-line or tabulated estimates of the SSF mass

properties. A saturation element is included as part of the simulated closed-

loop system, because of the possible differences in the commanded and

actual control signal that could be caused by high demanded control torques

(the control torque saturation is set at 150 lbl, whereas CMG saturation is

set at 20, 000 ft - IbI -sec).
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>.
¢m

C

l

Figure 5.1: Attitude/Momentum Control and Stabilization System Archi-

tecture.
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The attitude/momentum control law used in this study is as follows:

u(t) = -g(0*)x(t) (5.1)

where the state vector x(t) is given by equation (4.47) and the 3 x 24 gain

matrices, K, are determined for various TEAs, using the LQR algorithm

described in the following section.

5.2 LQR Design with Pole Placement

Because the full state considered in equation (4.47) is available for mea-

surement and because a time-optimal control law of minimal complexity is

desired, the LQR is appropriate for use in obtaining the constant gains of

the ACMM control system. The various linear designs are performed using

the dynamic system described by equation (4.46), with the elements of the

system matrices evaluated at specific values of the TEA, corresponding to

various assumed configurations of the SSF during the assembly sequence.

Assuming the state-space form of equation (4.46) with an n-dimensional

state vector, an m-dimensional input vector and without the external dis-

turbance term, the LQR problem can be stated as the minimization of the

following functional:

J = xT(t)Qx(t) + uT(t)Ru(t))dt (5.2)

where the weight matrices Q and R are (n x n)-dimensional non-negative

definite and (m × m)-dimensional positive definite symmetric matrices,

respectively. The full-state feedback control law that minimizes the above
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functional is given by:

u(t) = -Kx(t) = -R-'BTpx(t) (5.3)

where K is the feedback gain matrix and P, a (n x n)-dimensional non-

negative definite symmetric matrix, is the solution of the following Riccati

equation:

PBR-1BTp - PA - ATp - Q = 0 (5.4)

where the pair (Q, A) is assumed detectable.

It is usual practice to arbitrarily choose the matrices Q and R, resulting

in a certain gain matrix K and the associated stable closed-loop poles.

However, these closed-loop pole locations, though in the left-half plane,

may or may not be desirable. The problem of selecting the matrices Q

and R such that the resulting closed-loop pole locations fall in a desired

sector, has been widely investigated. This is the so-called LQR problem

with pole placement and it has most recently been addressed by Sunkel et

al.[6]. Throughout this study the LQR with pole placement suggested in

the above reference has been used with some modifications in the solution

approach of the Riccati equation. The algorithm proposed by Sunkel and

Shieh [6], allows the choice of the weight matrix R and the desired sector

within which the closed-loop poles are to be located. The feedback gain

matrix K and the weight matrix Q which place the closed-loop poles in the

chosen sector are then determined.

One of the numerical issues encountered in using the LQR problem for

the SSF with large TEAs is the solution of the associated Riccati equation.

As the order of the Riccati equation to be solved in this study is fairly high
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- the closed-loop system is 24th order, however, the Hamiltonian formed

is 48th order - use of the algorithms existing in the various control system

design packages resulted in very inaccurate solutions. Therefore, the Riccati

equation involved in the LQR/Pole placement algorithm was solved using

the matrix sign function [6], with the following expression used for the

evaluation of the matrix sign function:

sign(A ) = lira S(k) (5.5)

where S(k) is evaluated using the following recursive expression:

s(k + l) = S(k)[SI + lOS2(k) + S4(k)][I + lOS(k) + 5S4(k)] -' (5.6)

with S(O) = A.

The LQR based control gains have been obtained for various assumed

SSF configurations. The inertias for two of the configurations analyzed are

given in Table 1, along with the corresponding estimated values of the TEA.

The Assembly Flight #3 (MB3) corresponds to a highly non-symmetric SSF

configuration, resulting in a large value of pitch TEA. In contrast the AC

configuration corresponds to a highly symmetric configuration with small

TEA. The numerical values of the gains for these two configurations can

be obtained from the figures presented in the following pages. For all of

the linear designs the closed-loop pole locations are chosen to be within

the sector shown in Figure 5.2, as it has been the experience of the authors

that containing the closed-loop poles in this region reveals relatively "good"

system performance.
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Desired

Closed-Loop
PoleSector

Im

-0.5n

Re

Figure 5.2: Pole Assignment Sector for the LQ Pole Placement Algorithm.
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Table 1. Space Station Freedom Configuration Parameters

Parameters

Inertia

MB3 AC

(slug - ft 2)

/11 23.22 x 106 50.28 x 106

I22 1.30 x 106 10.80 x 106

I_ 23.23 x 106 58.57 x 106

I12 -0.023 x 106 -0.39 x 106

/13 0.477 x 106 0.16 x 106

I_3 -0.011 x 106 0.16 x 106

TEA (degrees)

0; 1.3 0.19

85 -44.7 -5.0

2.182 0.56

5.3 Gain-Scheduling of the Linear Gains

Gain-scheduling allows nonlinear control system implementation of linear

control laws, which have been designed using any linear design method.

A gain-scheduled control law is an open-loop adaptive control system [7].

Even though feedback control is used, the adaptation is open-loop and

the system performance may suffer. A continuous gain-scheduled control

system is designed by simply fitting the various LQR gain matrices to a

certain nonlinear function.

In view of the linearized system model of equation (4.46), the linear
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control law obtained by repeated application of the LQR algorithm is:

= K,x(t)

where i = 1, 2, .. is the number of SSF configurations for which the LQR

algorithm has been applied. Second order polynomials were used to sched-

ule the elements of the gain matrices Ki. The behavior of the fitted gains

as a function of the TEA are depicted in Figures 5.3 through 5.25.

As a result of the nonlinear nature of the gain-scheduled controller and

of the open-loop system, there is no systematic procedure to determine the

performance and the stability characteristics of the nominal SSF config-

uration, other than to exhaustively simulate the system for a variety of

scenarios and for sufficiently large number of orbits. Additionally, the ro-

bustness properties of the controller can only be investigated via numerical

simulations. The results of these studies are presented in the following

section.
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Chapter 6

Simulation Results

The primary purpose of this section is to present some numerical simula-

tions to substantiate the following two claims:

(1) Certain SSF configurations characterized by large cross-inertia terms,

such as the earlier flights in the assembly sequence or during some of

the MRMS operations [2], require special attention when designing

linearized control systems.

(2) Because of the slowly time-varying nature of the SSF dynamics, a

gain-scheduled control system provides "good" closed-loop perfor-

mance, even for fairly large variations in the SSF inertia matrix.

This results in less complex control laws as compared to alternate

adaptive schemes requiring on-line identification, though, the system

performance may suffer if the uncertainty in the inertia matrix is very

high.

6-1
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Figure 6.1: Aerodynamic Torque Profiles.
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CHAPTER 6. SIMULATION RESULTS 6-13

r_
O

.._l

u_

rw
<

z

..1
z
O
Z _z
v_

c_ o

g

Z

8

_.1
o

Z
o

Z
O

<

w

<
D_
CD

b

I

I

I

I

I

I

¢-

_q

0q

fir

rn F__z

-- o
(..9 cn

o
T I

%

¢

(

I I I
0 0 0 0
0 _ u_

I

I 1 I
0 0 0 0
0 Lr_ 0 LO

I I

(Sq-ld) 3QO_OI qOSINO0 MYk

o
--c3

tn
W

- Z
t',q m

_E
V

w

p-

0
-o

s--

I

i

0

0
o
c,q

I

Figure 6.12: Yaw Axis Control Torque Response for MB3 Configuration.



CHAPTER 6. SIMULATION RESULTS 6-14

n-
O

.._l
:D
2;

bO

rw

Z

_.]
Z
O _,

Z

Z
>_ _,

f_

>- o

G
rw __

r_ 8

..3
o ?=

k--
Z
o

Z
O

U_

w

D_
(/3

f

I
O
o
o
o

0
--0

0

0
--0

I I I 0

0 0 0 o 0 0
o o o 0 o
0 0 0 0 0
0 0 0 0 0

t I I

 nzN3non ono

I.d
p-

Z

2;

w

Figure 6.13: Yaw Axis Angle Momentum Response for MB3 Configuration.



CHAPTER 6. SIMULATION RESULTS 6-15

All of the simulations subsequently presented in this section have been

performed using the nonlinear simulation model for the SSF presented in

section II of this paper. To demonstrate the first claim, two sets of simula-

tions are performed using the MB3 configuration. In both cases the LQR

synthesis algorithm with pole placement is used and the closed-loop poles

are placed within the boundaries drawn by the two 45 deg lines and the

-0.5n vertical line, as shown in Figure 5.2. For the first set of simulations

it was assumed that even though an accurate estimate of the TEA will

be available, i.e. the TEA estimate will be obtained using the full inertia

matrix, the controller design will be based on a model that ignores the

cross-inertia terms. Therefore, these simulations utilized a linear control

system designed using the model described by equation (4.46), with the

cross-inertia terms set to zero. However, the actual values of the TEA, as

given in Table 1, were used in the evaluation of the various non-zero matrix

elements of the system dynamics, i.e. the LVLH approximation was not

made. The second set of simulations were performed using a linear control

system based on the fully coupled roll/pitch/yaw motion as described by

equation (4.46), and with the same values of the TEA as before. In both

sets of simulations, the same initial conditions and environmental distur-

bance terms were used.

The simulation results for these two cases are shown in Figures 6.1

through 6.13. These studies clearly demonstrate the error introduced in

arbitrarily discarding the cross-inertia terms when the analyzed configura-

tions correspond to large angle TEA. The transient response of the closed-

loop system becomes unstable within less than one-tenth of an orbit, unless
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the cross-inertia terms of the linearized system model used in the control

synthesis are included. The controller response with the cross-inertia terms

included, is not perhaps the best possible, as further fine tunning of the

desired closed-loop pole locations could possible reveal transient responses

with less excursions.

Demonstration of the second claim proved to be more time consuming

and computationally more intensive. In order to arrive at a gain-scheduled

controller, several linear designs were performed for various SSF configu-

rations with TEA ranging form -45 deg to LVLH. These configurations

correspond to inertia matrix variations of up to 1600%, for some of the

cross-inertia elements. The gain-scheduled closed-loop dynamics were sim-

ulated for 130 orbits while the inertia matrix was allowed to change in a

stair-case fashion from the MB3 configuration to the AC configuration, as

shown in Figures 6.14 through 6.19. The results of these simulations are

presented in Figures 6.20 through 6.30. With the exception of the bias

terms the external disturbances were kept the same, as the inertia varia-

tions were made. These transient responses indicate that a gain-scheduled

controller, whether it is in table look-up form or a continuous polynomial

as presented in this study, is sufficient in handling large changes in the SSF

inertia matrix, including configurations that are characterized by large an-

gle TEA. This is primarily attributed to the slowly varying dynamics of the

SSF, with characteristic time constants on the order of tens of minutes.
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Chapter 7

Summary and Conclusions

This study presents a systematic derivation of the SSF dynamics linearized

around an arbitrary TEA. Linearized models which appeared in the lit-

erature can be obtained from the presented model by eliminating certain

variables or by setting them to specific numerical values. The usefulness of

the fully coupled model in control system design for large angle TEA config-

urations is demonstrated by designing linear control laws based on models

with and without the contribution of the cross-inertia terms. The nonlin-

ear simulations indicate that control laws for ACMM based on small angle

linearized or pitch and roll/yaw motion decoupled models of the SSF may,

under circumstances, result in unstable closed-loop systems, even though

the linearized closed-loop systems appear stable and with good overall per-

formance. Additionally, numerical robustness studies have revealed that

the closed-loop system remains stable for up to 4- 30% variations in the

SSF inertia matrix, as previously reportes in the literature [1].

As the inertia properties of the SSF will be varying for a number of rea-

7-1
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sons, such as the assembly sequence and MRMS operations during or after

assembly complete configuration, it is desirable to allow smooth ACMM

throughout such scenarios. From this study it is evident that a single

set of gains will not allow the controller to stabilize the system. It has

been therefore proposed to use a gain-scheduled controller with the TEA

being the scheduling variable. The approach suffers, as estimates of the

TEA must be available in order to update the gains, however, it compares

favorably to alternate adaptive control techniques requiring on-line identi-

fication. Some additional computer storage will be required to retain the

second order polynomial coefficients in memory. Alternate implementa-

tions, such as a tabular form of the gains, could be used to further reduce

the storage requirements. Transient response simulations indicate that for

inertia matrix element changes of up to 1600%, the gain-scheduled con-

troller provides "good" ACMM. It is not the intention of this study to

fine-tune the gain-scheduling for best performance and/or robustness. Ad-

ditionally, no attempt has been made to determine the maximum variation

in the inertia matrix that the gain-scheduled controller can tolerate. These

and other practical implementation issues, such as controller complexity

and storage requirements, remain to be explored.
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Part III

Controller Synthesis for

Input-Output Tracking in

Uncertain Nonlinear Systems



Chapter 8

Introduction

One of the fundamental design requirements for feedback control systems

is servo-tracking or the ability to regulate controlled outputs without any

steady-state errors in the presence of disturbances and plant parameter

variations. This problem has been extensively studied in the literature,

especially in the context of linear-time-invariant (LTI) systems. It is worth

emphasizing here that in the classic asymptotic servo-tracking problem,

the one that has been treated extensively in the literature [e.g., Francis

and Wonham (1975)], no particular attention is given to the initial track-

ing error, though it is clear that the initial errors will be bounded as a

consequence of closed-loop stability. In the design of such systems the in-

ternal model principle proposed by Francis and Wonham (1975) plays an

important role. The internal model principle states that the controlled

output tracks a class of reference inputs with zero asymptotic error, if the

reference is included in the stable closed-loop dynamics. For example, recall

that no steady-state error occurs for step reference commands in a type 1,

8-1
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stable, closed-loop system which has an integrator in the loop. Note that

the integrator is the generator for step inputs. This type of a servo system,

although is robust to plant parameter variations, is quite sensitive to vari-

ations in the reference input. For example, in the case of a step input, if a

small sinusoidal variation is added, the steady state error will no longer be

zero. The reason is that the integrator is not the generator of the reference

command anymore. Consequently, at steady-state the closed-loop system

will exhibit a sinusoidal oscillation. In real-world problems, however, one

has to deal with such situations, and the internal model principle alone can

not resolve these issues.

In order to deal with potential inaccuracies in reference command in-

puts, a novel notion of tracking, called tracking in the sense of spheres was

recently introduced by Jayasuriya et al (1984). The emphasis there is that

servotracking should be viewed as the ability to follow a desired output

within a specified error bound over its entire duration; that is, to obtain

a closed-loop system that tracks reference commands and rejects a class

of external disturbances, to the extent required by the error bound, in the

presence of plant uncertainties.

In asymptotic tracking, usually a desired output vector yo(t) E R z is

specified and the actual output vector y(t) E R z is required to follow the

desired output asymptotically. The idea of tracking in the sense of spheres,

unlike the asymptotic tracking case, requires that IlY- yo It be smaller than

a prespecified real number. Here II.ll denotes any L_p - norm though the

specific norm we consider in the present study is the L_ - norm.
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Remark 1: (i) Let y, yo 6 L_, then

HY- YollLg=- miaX(fo °° ]yi(t) - yo_(t)[Pdt) 1/p,

where p is a finite positive integer.

(ii) If y, Yo 6 L_, then

i = 1, 2, ...l

IlY - YolIL_ -- max[ess sup lYi(t) - Yoi(t)l], i = 1,2, ...l.
' t6R

The notion of tracking in the sense of spheres is primarily based on

the fact that a system with uncertainties cannot be forced to track a given

output precisely although it may be possible to do so with a small tracking

error. When the tracking specifications are posed in a quantitative manner,

as is done in this study, it becomes necessary to deal directly with the

uncertainties of the system. Unlike in the classic servotracking problem, the

necessity of having to deal directly with the uncertainties in this "precise"

tracking problem makes it difficult to obtain criteria and design algorithms

that are both sufficient and relatively simple.

In the literature the tracking problem in the sense of input-output

spheres has been formulated by Jayasuriya et al (1984), Jayasuriya and

Kee (1988), (1990) in terms of topological neighborhoods in normed func-

tion spaces Loo and L2. The main design criterion central to the method-

ology of .]ayasuriya et al (1984) can be stated as a quantitative pole place-

ment (QPP) procedure for adjusting the size of a certain linear operator

norm. In particular, the sphere specifications are satisfied provided a proper

placement of eigenvalues can be found so that a certain closed-loop opera-

tor characterized by these eigenvMues belongs to a set of linear operators
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whose Loo or L2 induced norms are upper bounded by a real number de-

termined by the radii of input-ou_pu_ spheres and the uncertainties in the

system. However, it has been difficult to obtain such eigenvalue locations

in a systematic way.

In Jayasuriya et al (1984) a trial and error procedure was suggested for

the Loo - problem. In a recent paper, Jayasuriya and Kee (1990) studied the

problem further and gave additional insight to the QPP. In particular, they

proposed a certain perturbation of the classic Butterworth pole patterns as

a solution to the Loo , QPP problem. Jayasuriya and Kee (1988) also

studied the QPP problem when the tracking specifications are in terms

of L2 - measures and the plant is of the Lu_e type. They gave a circle

criterion for solving the latter QPP problem which was facilitated by the

Hilbert space structure of the function space L_.

A formal procedure for selecting the eigenvalues for the QPP problem,

especially when Z,_o - tracking measures are employed, is currently lacking.

The present study is aimed at partially filling this gap. We say partially be-

cause the class of nonlinear systems considered is limited to be of the Lule

type. A Lu_e type system lends itself to an L2 - formulation which can sub-

sequently be adopted to an L_ - framework. Embedding the problem first

in L2 allows us to draw upon some classical results from nonlinear systems

theory on one hand and to utilize Hoo - minimization [Francis(1987)] for

solving the QPP on the other hand. Loo - performance specifications are ex-

tracted from the L2 - formulation by resorting to an exponential weighting

of L2 - functions, yielding Loo - functions.

Part III of this report is organized as follows. First, some preliminaries
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are given in chapter 9. The input-output tracking problem related to Lute

type nonlinear systems is formulated in chapter 10. In chapter 11, an

algorithm for minimizing the Ho_-norm is given, followed by a step by

step design procedure for the nonlinear tracking problem in chapter 12.

A simple second order system is used in chapter 13 to demonstrate the

design methodology, followed by a two-degree-of-freedom (2 DOF) robotic

manipulator in chapter 14. Summary and conclusions from part III of the

report are presented in chapter 15.



Chapter 9

Some Preliminaries

Some basic concepts from elementary functional analysis and notation are

collected below.

Lk[O, oo) space: is defined as the space of measurable functions with

the norm defined as

Ilfll, = max If_(t)l"dt)a/" < _, i= 1,2,...k

where f(t) E R k. II.llp denotes the Lp - non_ of the function (.) in the

L k - space. When it is understood that f(t) E R k we will simply use the

notation f E Lp[0, oc) instead of f E Lk[0, oc) throughout this paper.

When p = 2 we have the Hilbert space L2 specified by f E L2[0, oo)

where

_(f0 °°Ilfll2 = m Ifi(t)12dt) 1/2 < _, i= 1,2,...k

Whenp = e¢ we have the Banach space Loo defined by f E Loo[0, _), where

Ilflloo= m_x[¢_ sup IA(t)l] < o_, i--- 1,2,...k
' te[0,oo)

9-1
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L2e[0, _) denotes the extended L2[0, c_) space defined as

t

= {f: _ _-, vl v_ e 3, H(f)fll_ - (]0 If(e)l2dt) 1/2 < 00)

f 0<t<Twith f_" = 0 t >__

where T denotes a truncation (Desoer, 1975).

Central to the present study is the novel concept of tracking based on

topological notions first introduced by Jayasuriya et al (1984). This notion

of tracking is referred to as tracking in the sense of spheres. Also used in

the study are ideas drawn from the Hoo - optimal control literature and the

multivariable circle criterion cited below.

9.1 Tracking in the Sense of Spheres

Conventionally, tracking is considered to be the following of a specified

trajectory y(t) in an asymptotic sense. That is, the actual trajectory y(t)

should approach the reference trajectory yo(t) as t -_ oc. As opposed to

this classic definition of asymptotic tracking, the present work is based

on a more stringent tracking requirement where the actual trajectory y(t)

is forced to follow the reference yo(t) as closely as possible for all times

E [0, co). This is the notion of tracking in the sense of spheres which is

illustrated in Figure 9.1 and expressed in a mathematically precise fashion

below.

Definition 1 : A given output (input), y : T ---* R p (r : T _ R m) is

said to belong to an output (input) sphere fl(y, yo,/_o) (fl(r, ro,_,) ) of
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radius /3o > 0 (fl, i > 0) centered at Yo : T ---) R p (to : T ---) R") if

IIY- Yoll < flo (]l r - roll _< fiT,), where I].ll is any norm associated with the

output (input) function space F = {YIY : T _ Y} (A = {rlr: T ---) R})

and T is the time set. yo (ro) is referred to as the nominal output (input).

Definition 2: If for any input r in the input sphere f_(r, ro, flri), the system

output y stays in the output sphere f_(y, yo,flo), then, we say that the

system tracks the reference Yo in the sense of input-output-spheres of radii

fl_ and/3o, respectively.

9.2 The Multivariable Circle Criterion

The multivariable circle criterion (Cook, 1972) can be summarized as fol-

lows:

Let a nonlinear, time-invariant system have the equations

x(t) = Ax(0 + Bu(0

y(t) = Cx(t)

(9.1)

where the nonlinear control u(t) = -Fy(t), F = diag[f_(t, y)] and t_y2(t) _<

fi(t,y(t))y(*) < )3;y2(*), ai < fli, i= 1,2,...,m. Also, x(t),u(t) and y(t)

are real vectors, of dimension n, rn and rn respectively.

Let tx = diag(ai) and _3 = diag(fli) such that nt < F _< /3, and the

rn x m transfer function matrix H(s) be defined as

H(s) = C(sI- A)-IB = [hlj(s)], i = 1,2, ...m, j = 1,2,...m

The resulting closed-loop system is described by the nonlinear, time varying
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Figure 9.1: Illustration for Precision Tracking.
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equation

Now define

±(t) = {A- B(diag[fi(t,y(t))l)C}x(t). (9.2)

d,(s) = 2Ej_=I,j¢,lh,j(s)l, i -- 1,2,...m

and

_i(,S) ---- _jm=l, i = 1,2,...m

and let D be a contour consisting of the imaginary axis from s = -jR

to s = jR, together with a semi-circle of radius R in the right half of the

complex s-plane. Defined below axe the ith Gershgorin mean band and the

critical disc.

Definition 3: The band swept out by the discs with center hii(s) and

radius [di(s) + _(s)]/2 as the complex variable s traverses O by the disc

with center h,(s) and radius [di(s) + afi(s)]/2 is named the ith Gershgorin

mean band. The disc with the two points (-1/ai,0) and (-1//_,0) as

diameter is called the ith critical disc, D(ai, _i). The ith Gershgorin band

and the critical disc are illustrated in Figure 9.2.

With the above definition, the multivariable circle criterion (Cook, 1972)

can be stated as lemma 1.

Lemma 1 ( The Multivariable Circle Criterion): Let (A,B,C)

be a minimum-order realization of H(s) and let the ith _ershgorin mean

band have no point in common with the ith critical disc, and let the ith

Gershgorin mean band encircle the ith critical disc Nci times clockwise as

s goes once clockwise around D, these conditions remaining satisfied for all
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Figure 9.2: Illustration for ith Gershgorin Band and the Critical Disc.
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such contours D' with radius R' _> R, and suppose

Ei_,N_i = -Po (9.3)

where Po is the number of poles of the system transfer matrix H(s) lying

in the closed right half s-plane. Then the system (9.2) is stable in the sense

of Liapunov.

Proofi See Cook (1972)

Lemma 1 can be viewed as an extension of the Nyquist stability criterion

to Lu_e type systems with the actual disc playing the role of the -1 point

and the Gershgorin mean band playing the role of the Nyquist plot.

The relationship between Liapunov stability and the L2 stability is de-

scribed in Desoer and Vidyasagar (1975) and can be stated as: If the

nonlinear control u(t) in Eqn. (9.1) is of the form -Fy(t) + r(t), where

r(t) is a reference input, then, the closed loop system is L2 stable (i.e.,

y(t) E L2 whenever r(t) C L2 ) provided the conditions of lemma 1 are

satisfied.



Chapter 10

Problem Formulation

In this section, the L_ - tracking problem for Lu_e type systems is for-

mulated. The formulation consists of first showing the L:_ - stability of

a certain exponentially weighted form of the actual system equations, to

assure L_ - bounded-input, bounded-output stability of the actual system,

followed by an estimation of the tracking errors in terms of the Lo_ - mea-

sures. The main design criterion is shown to be a "minimization" of the

H_ - norm of a certain linear closed-loop operator. The approach to the

problem is based on fixed-point techniques and some results drawn from

nonlinear systems theory, especially the multivariable circle criterion.

10.1 Plant and Control Structure

Consider the nonlinear, uncertain system in the state-space form

x(t) = Ax(t) + Bu(t) + Gd(t) - f(y(t), -/, t)

y = Cx(t)

(10.1)

10-1
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where x(t) E /V' is the state, y(t) E R p is the output, u(t) E R TM is

the control, d(t) E /V is the disturbance vector, t E T = [0, oo) and

f(y(t), 7, t) :/ff x R _ x T ---* /V' is a nonlinear function. A, B, G, C are

constant matrices of appropriate dimensions.

The control objective is to guarantee Loo - robust tracking in the sense

of spheres. That is we require the output y(t) to be inside a sphere of radius

flo with the nominal output yo(t) as center for every reference input r(t)

lying inside a sphere of radius flri with the nominal reference input ro(t) as

center. In Jayasuriya and Kee (1988) a similar problem was studied but

the input and output spheres were defined in terms of the L2 - norm.

The controller structure shown in Figure 10.1, is adopted for effecting

tracking in the sense of spheres where Sc denotes a servo-compensator, So a

nonlinear observer and S, a stabilizing compensator. State-space descrip-

tions of each of the blocks So, So and S_ are given below.

10.1.1 Servo-Compensator Sc:

±c(t) = Acxc(t) + Bc(r(t) - y(t)) (10.2)

The plant dynamics and the servo-compensator dynamics lead to the aug-

mented state equations

Xo(t) [A0]ix , ] [B]= +
-BcC A_ x_(t) 0

+ -
Bc 0 d(t) 0
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SC S$
P

Y

Figure 10.1: Controller Structure.
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= A_x_(t) + B_u(t) + G_w(t) - f_(y(t), 7, t) (10.3)

y(t) [C 0][ x(t) 1= = Coxo(t) (10.4)
xc(t)

where r(t) E R p is the reference input and (Ac, Be) is a controllable pair

with l)_I - Ac I = A" + a,_lA "-1 + ... + al,k + O_o. In addition Ac G R pqxpq,

Bc E /ffq×P and xc E R pq. The purpose of including a servo-compensator

in the control loop is to assure zero error at steady state when there is no

input uncertainty.

10.1.2 Nonlinear Observer So:

In order to estimate the plant states, we use the nonlinear observer So

having the following state equation:

_(t) = A_(t) + Bu(t)- fo(y(t),t) + H(y(t)- _(t))

_(t) = C_(t)

(10.5)

where _(t) E R '_ is the estimated state and H is a constant observer gain

matrix of order n × p. fo(y(t),t) is a nonlinear design function obtained

by replacing the uncertain parameters 3' in f(y(t), % t) by their nominal

values. Note that although the augmented state is [xT(t) T TX_ (t)] , there is

no need for an observer to estimate both x w(t) and x T(t), since x T(t) is

already available by the construction, given in Eqn. (10._).
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10.1.3 Stabilizing Control Law Ss:

The stabilizing control law S, consists of state feedback from _(t) and xc(t)

and a nonlinear control fm(y(t),t) given by

u(t) = [K: Kc]_=(t) + flo(y(t),t) (10.6)

where K: and Kc are constant state feedback gain matrices. The nonlinear

controller fl0(y(t),t) is obtained by replacing the uncertain parameters 3'

in f,(y(t), v,t) by their nominal values.

We make the following assumptions regarding the state-space represen-

tation of Eqn. (10.1):

(i) The triple (A, B, (2) is controllable and observable.

(ii) f(y(t), % t) satisfies the matching condition:

f(y(t), 3",t)= Bf_(y(t),7, t)

fo(y(t),t) = Bf:o(y,t).

(iii) There exists a constant matrix N such that B = GN.

Now, by collecting equations (10.1 - 10.6), we arrive at the following

closed-loop equations

/,.(t) = Azz(t)+ Bzw(t)-dp,(y(t),3",t)

= A,z(t) +Bzw(t)- Bz¢(y(t), 3", t)

y(t) = C,z(t),

(10.7)



CHAPTER 10. PROBLEM FORMULATION 10-6

where

¢(Y(t), 7, t )

tz

Cz

A BK_ BK1

-B¢C A_ 0

HC BK_ A+BK1-HC

[C 0], ¢l(y(t),_', t)= B

(fl (y(t), % t) - flo(y(t), t)),

0 G

, Bz -- Bc 0

0 0

fl(y(t), 7, t)- flo(y(t),t)

0

0

and z(t) --

x(t)

xdt)

In the above closed-loop arrangement the design parameters are the

matrices K1, Kc,H and the nonlinear function fl0.

Since the control objective is L_ tracking in the sense of spheres,

we now proceed to establish BIBO stability of the exponentially weighted

closed-loop system with an appropriate bound on Lo_ tracking error. In

order to establish the results, we first prove L2 - stability of the closed-loop

system by exploiting the fact that Eqn. (10.7) is of the classic Lu_e form.

The circle criterion gives conditions for L2 - stability. Once L2 - stability

is guaranteed, we conclude Loo stability of the closed-loop system by the

exponential weighting technique. After proving Loo - stability, we provide

estimates for the tracking errors in terms of the Loo - norm. One primary

motivation for embedding the problem first in L2 is to utilize Hoo - optimal

control theory for obtaining the design matrices K = [K1, Kc], and H.
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10.2 L2- Stability

Consider the closed-loop system shown in Figure 10.2, described by Eqn.

(10.7).

By defining H(s) -- Cz(sI- Az)-IB_ with h(t), the impulse response cor-

responding to H(s), Eqn. (10.7) can be written in the following integral

form.

_-/0'h(,
/0'= v(t) - h(t - r)¢(y(r), % r)dr,

fo t h(t r)w(r)dr.

y(t) h(t - T)¢(y(T), 7, T)a_

(10.8)

where v(t)

On multiplying both sides of Eqn. (10.8) by e_*, a E R 1, we obtain

e=ty(t) = e_tv(t)- fote=(t-')h(t- r)e_¢(y(r),7, r)dT

which can be written as

i'y_(t) = v_(t)- h_(t- r'e°'-'e-_') Ok Y_t'r'), 7, r)dr,

(10.9)

(10.10)

on substituting y_ = e_ty(t),h_ = e_th(t), and v_ = e_tv(t) = f_ h_(t-

_)w.(_)dT with w.(t)= _°'w(t).

We assume that the nonlinearity ¢(y(t), ",/, t) lies in the sector Joe, fl], ]3 >

0 (Desoer, 1975). With oe = diag(oq), fl = diag(/3i) and dp - diag(¢i), i =

1, m, where m is the dimension of (ib, the sector condition becomes aiy_ <_

yi¢i <_ #iy_ for i = 1, m. We further assume that h_ = e_h(t) E L1NL2, for

some a > 0. The L2 - stability of the exponentially weighted system (10.10)

can be obtained by the multivariable circle criterion and is summarized in

the following lemma :
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W
÷ Y

Figure 10.2: Block Diagram of the Closed-Loop System.
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Lemma 2: If the Nyquist diagram w _ H_(jw) = H(-a + jw) satisfies

conditions of the multivariable circle criterion, then, the system of Eqn.

(10.10) is L2_ stable (i.e., w, • L2_ =v y, • L2, ).

Proofi From Eqn. (10.10), we have

y,(t) = v_(t) - h_(t-r)e_+¢(c-"'y,(r),7, r)dr (10.11)

which is equivalent to Eqn. (10.9)

e"ty(t) = e_'v(t) - fote_(t-*)h(t - r)e_¢(y(v),_ ', r)dr

/0' /0'= e°' h(_-,')w(,-)d,- _°_-'_h(_- ,-)_°"

¢(y(,-),_,,-)a,- (lO.12)

The block diagram corresponding to equation (10.12) is shown in Figure

10.3.

Since the output y, = e"*y(t) and ¢(y(t),%t) • [c_,_] with respect to

y(t), it can be easily concluded that @t¢(y(t),'t,t) = @tdp(e-"ty_(t),%t)

belongs to the same sector [ct,/3] with respect to y_(t) because the latter

simply involves a scaling by e_t (see Figure 10.4).

Since ,#_ = e"*_b • [c_,15], we can directly apply the circle criterion to

determine the stability of system (10.10). Consequently when w,_(t) • L2,

and H_(jw) satisfy the conditions of the circle criterion or lemma 1, it

follows that y, • L2,.

Note that since H_(jw) = H(-a + jw), the L2, stability of the system

given by Eqn. (10.10) is verified by replacing the standard polar plot H(jw)

by H(-a + jw) in the circle criterion.
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+ loath
eatw _ _ _ eaty

Figure 10.3: Block Diagram of the Exponentially Weighted Closed-Loop

System.
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Y

Figure 10.4: The Sector Bound Condition Comparison.
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10.3 L_- Stability

In what follows, we use the L2e - stability conditions of the exponentially

weighted system (10.10) to establish the L_ stability of the actual closed-

loop system represented in the integral form in Eqn. (10.8).

Lemma 3: If the exponentially weighted system is L2e stable then the

original system is L_ stable.

Proof: Recall that system (10.10) is

ya(t) = v,(t) - ha(t-r)ea'¢(e-a'Ya(_'),_/,v)dv (10.13)

where the nonlinear element ¢ • [ct,13]. Since system (10.10) is L2_ stable,

there exists some finite constant p such that

H[Ya(.)]r[12 < PlI[Va(')]TII 2 (10.14)

where II[Ya(')]TII_denotes the L=norm of the truncated function [ya(.)]T-

Using the fact that ha • .L1 and

/0'va(t) = ho(_-,)w_(T)eT (10.15)

and the Parseval Theorem [Desoer and Vidyasagar (1975)], we obtain

II[va(.)]rll_---sup IIHa(j_)llll[w_(')]z]l_" (10.16)

Substitution of Eqn. (10.16) into Eqn. (10.14) yields

II[Ya(.)]rll2< psup IIHa(jw)llll[w.(.)]TIl_ (10.17)
tM

and from the proof of the circle criterion [Desoer and Vidyasagar (1975)],

we obtain

l---L-- -_olI[w.(.)ITII_ (10.18)
II[Ya(,)]TII2--<"1- I_o
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where

Ht(s) - (I + mHa(s))-lHa(s)

_,o - sup llH,(j,,,)ll.
IM

By comparing Eqns. (10.17) and (10.1S), it now follows that

_o (10.19)p : (sup_IIHa(jw)]l)-11 - 17o

substitution of which in Eqn. (10.14) yields

II[Ya(.)]Tll2-<(sup HHa(J_)ll)-a
_d

_o II[va(.)l_ll_. (10.20)
1 - 17o

It can be easily seen that when w(t) E L_, then v(t) E L_, since h(t) E L,.

Moreover,

II[va(.)lTll2 LT= II[d'v(.)lrll_ =( II*a'v(*)ll_dt)'i_

LTelatdt)ll2 [(elaT--1) '12 ]_< sTpIlv(t)ll( = IIv(.)ll_ 1. _A]-,_ ]

< (2a)-'/_¢<_ar- lllh(.)ll, llwll_. (10.21)

Since the nonlinear element eat¢(e-atya(t), _, t) belongs to the sector [a, fl]

with respect to ya(t), we obtain

Iltd'¢(_--a'ya(t),'Y,t)]rll_< _ll[Yalrll_ (lO.22)

which becomes

I1[,°'¢(,- a'yo(t),"_,t)]r I1__< Z(sup IIHa(j_)ll)-' "_o
w 1 - 17o

((2a) -1/2 Ce 2aT - 1)II h(.)ll, IIw I1£lo-23)
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upon substitution of Eqns. (10.20) and (10.21). Taking the amplitude on

both sides of Eqn. (10.8), we obtain

[y(t)[ _< Iv(OI + Ih(t- r)[l_b(y(r),7, r)ldr

< Ilhll_llwIG+ e-_ e_(*-')lh(t- r)le_'l¢(e-_'y_(T),_,T)ldT

< IIhll_llwll_ + e-_llh(r)e_'ll2ll[W¢(e-_'y_(t),7, t)]Tl[2

(from Schwartz Inequality)

< [[h[[l[[wNoo + [Ih(r)ea_[[2t[[eat¢(e-aty=(t),%t)]T[[2 (10.24)

(sincet >0, a>0).

Now using Eqn. (10.23) in (10.24), the following is obtained:

]Iy(t)IG _< []lhlll + [Ih(r)earll2fl(sup IHa(jco)l) -1

% {(2a)-'/_/_ '°T- 1}llh(.)lll]llw,_
1 -/7o

-- KkllwiG, where Kk is a finite constant. (10.25)

From Eqn. (10.25) it is now clear that if w(t) e Lo_ ( i.e., ]lw(t)[]_ < oz)

then Ily(t)]]_ < oo implying that the original system is BIBO stable. This

completes the proof of Lemma 3.

Lemmas 2 and 3 are now combined in theorem 1 below to give conditions

for guaranteeing L_ - stability of the closed-loop system (10.8).

Theorem 1 : Given the nonlinear equation (10.8), with h(.) E L1, eath(.) E

L_ rqL2 for some a > 0, and with the nonlinear element ¢(y(.), 7, .) belong-

ing to the sector [e_, fl], fl > 0, the closed-loop system (10.8) is Lo_ stable,

provided that the Nyquist diagram w _ H=(jw) = H(-a + jw) satisfies

the conditions of the multivariable circle criterion given in lemma 1.

Proof." The proof of theorem 1 is immediate from lemmas 2 and 3.
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10.4 L_- Tracking

10-15

From theorem 1 we note that the closed-loop stability in the Loo - sense is

established by considering the modified Nyquist locus H(-a +jw) resulting

from Eqn. (10.12). The transfer matrix H(-a + s) can be thought of as

representing a system equivalent to the modified state equations

_..(t) = (hi + Az)z.(t) + Bzw.(t) - B_¢.(t) (10.26)

yo(t) = Cz%(t)

having the integral form

j_0 ty_(t) = Ca eA"C'-_)Bzw,,(7")dT"-

C_ f0 t eA"(t-_)B_¢_(ya(_-), "7, r)dv + c_eA"'z_(0)

where

or the operator form

Am= aI + Az (10.27)

ya(_)=C_FB_w,(t)-CzFB_¢a(t)y_(t)+y_(O) (10.28)

where y_(0) = CzeA"tz_(O) denotes the system initial conditions, and

(r,,)(_) = f0'eA"_'-'_x(_)d,,

¢_(t)y_(t) = ¢_(y_(t),%t) E [tx,fl].

Remark 2: Since (A, B, C) is controllable and observable, the control

gains K = [Kx, K_] and H can be found so that An(= (hi + Az)), a > 0, is

Hurwitz. Moreover, under the assumption that ¢(y(t), 7, t) in Eqn. (10.8)
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is sector bounded in [cx,/3], and the circle criterion in lemma 1 is satisfied,

we know that the system (10.28) is L2e stable because ¢_(t) also belongs to

the same sector. Thus, when w,, belongs to L2,, the linear and the nonlinear

operators F and _b_(t), map L2, back into itself.

We now recall that our control objective is to effect L_ - tracking in the

sense of spheres for the uncertain nonlinear system (10.8). So far we have

established Loo stability of (10.8) and L2, - stability of the exponentially

weighted system (10.10). Because one of our goals is to specify the design

matrices K1,Kc, H by an Hoo - formulation, we first solve the tracking

problem in L2, to obtain Hoo - conditions on the linear closed loop operator

(C_/'B,) and subsequently enforce the required Loo - tracking specifications

required of the original system.

Consequently, we start by considering a nominal system output specified

by (Wao(t),zao(t),y_o(t)) satisfying the following equations for the exponen-

tially weighted system.

i_o(t) = A_za0(t) + Bzwno(t)- B,ck_o(Y_o(t),t) (10.29)

y_o(t) = C,z_o(t)

which is a completely known hypothetical plant corresponding to (10.26).

¢ao(y_o(t), t) is a nonlinear design function, which is obtained by replacing

the uncertainty in ¢_(y_(t), _,,t)with the nominal values. Equation (10.29)

has the equivalent operator form

yao(t) = CzrBzw.o(,) - CzFB_¢_o(t)y_o(t) + y_o(0) (10.30)

where ¢_o(t)y_o(t) = ¢_o(y_o(t),t) and y_o(0) is the initial condition of the

nominal system. It is easy to show that the system given by Eqn. (10.30)
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is L2_ stable (see Remark 2).

Then, a comparison of the actual system and the nominal system (10.30)

leads to the error operator equation

ya(t)-y_o(t) = CzrB_(w,(t)-W,o(t))-CzrBz(¢,(t)y_(t)-¢_o(t)y_o(t))

(10.31)

on assuming y_(0) = y,o(0), from which we obtain

y_(t) = CzrB_(wn(t)-W,o(t))

-C_rBz(¢o(t)U°(t) - ck,_o(t)y_o(t))+ yao(t)

-- @y_(t). (10.32)

Thus, from (10.30) and remark 1, it immediately follows that • is an

operator mapping L2_ into itself. If w,(t) belongs to L2, it is easy to

see that the satisfaction of the circle criterion of lemma 2 guarantees L2

stability, because An is Hurwitz and ¢_(t) belongs to the sector [ct,/3].

Hence, the operator @ also maps L2 back into itself. If wn(t) belongs to

L2,, instead of L2, it is worth noting that the truncated function [w_(t)]T

is still in L2, where T is the truncation time. Thus, up to the truncation

time T, the input w,_(t) is in L2, and so is the output y_(t).

Note that Eqn. (10.32) is a fixed point equation with the mapping • :

L2 _/-,2. Hence, we can utilize fixed point theory to obtain a criterion for

the tracking performance. To this end, we summarize the local contraction

mapping theorem in the following lemma:

Lemma 4: Let y_o • (Y, II.II), Y is a Banach Space, and let Bv_ be

defined as a closed sphere in Y with center at yao given by

B_,o = {Y.IIlY. - y.oll -< _,,}, where _. > 0 (10.33)
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Let @ : Y _ Y be a linear map. If there exists a constant k, 0 < k < 1,

such that

(i) IIg_ya - _y'_[[ < k]lya - Y:[I, V Ya, Y: e B_

(ii) IJ_I'yoo- y°oll -< a.(1 - k).

Then, it follows that

(i) • maps B_ into itself

(ii) • has a unique fixed point y_ E B_ such that _y_ = y]

Proof: See Martin (1976).

Lemma 4, together with the fixed point equation (10.32), and the sphere

specification on input-output tracking, lead to the following main result for

guaranteeing L_ - tracking in the sense of spheres for the closed-loop system

(10.8):

Theorem 2 : Let w(t) E R _ and y(t) E R p denote the exogenous input and

the plant output vector of the closed-loop system and let the design matrices

K1, Kc, H and the nonlinear design function rio(t) be such that the closed-

loop system satisfies the conditions stipulated in theorem 1. Let Wo(t)

(- [roT(t) doT(t)] T, do(t) = 0), Zo(t) and yo(t) be the known nominal input-

output combination satisfying the nominal tracking model of Eqn. (10.30),

and w(t)(= [rT(t) dT(t)]T), z(t),y(t) be any combination satisfying the

actual closed-loop equations (10.28). Then, for any reference input r(t) in

the prespecified input sphere

£Z(r, ro, fl,,) = {r(t) C LLI Ilr(t)- ro(t)llLo. </_,,} (10.34)

and a bounded disturbance with norm IId(t)ll=, there exists a unique plant
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output y(t) in the prespecified output sphere

f/(y, yo,)8o) = {y(t) E L_] ]ly(t) - yo(t)]IL_ <_Do)

provided that

where

/31_<
3o

(lO.35)

(10.36)

&

- IIC_(sI--A.)-aB_IIH=, A._= aI+A,, a>O

= sup II[Vy¢(y(t),'7, t)]T]12

= sup II(¢(yo(t),7, t) -dPo(Yo(t),t))Tll2

with Co(t) serving as the nominal value of ¢(t) at yo(t).

Proof.- First we consider the fixed point form (10.32) of the exponentially

weighted system and obtain conditions for assuring that the mapping if' is

a local contraction over the exponentially weighted output sphere Ily,(t) -

y_o(t)Jl2 _<_..

Consider

II(_I'y_(t)- _y:(t))TJ]2 = II - CzrB_(¢_(t)y_(t) - ¢_(t)Y:(t))TII2

Ilc_rnzll,2ll( ¢=( t)y_( t) - ¢_( t)y'_( t) )TII2

' t-< kll(yo(t)-yo( ))T]I2 (10.37)

where

k = IIC,rBzll,2
Ya#Y_,

II(¢_(t)y_(t) - ¢_(t)y'_(t))Tll2
sup

ya,y'aEBu_,_'e_CR r H(Y_(t) -- Y'_(t))TII2
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' tII(¢.(0Ya(t) - ¢.(t)y_( ))TII_
= IIC.rnzll,= sup

II(yo(t)- y_( ))TII_

From lemma 4, for • to be a local contraction, we require

(10.38)

II(_t'y_o(t)- _Y=(t))TIIz

= IlCzrB_(w_(t) - W_o(t))T -- c__rB_(¢o(t)yoo(t) - ¢=(t)Y=(t))TIIz

_< IIC_rn_ll,2{ll(w.(t)- W.o(t))TII2 + sup II(¢o(0Yoo(t) --¢_o(t)y.o(t))Tll:}
"-/e9

5 (x,,(1 - k). (10.39)

Now, let II(w.(t) - W.o(t))TIl= _ _, be a prespecified input sphere radius

in L2 and define

yielding

51 = IIC_/_nzll,2 _ IlCz(sI- An)-IB_IIH_

_2 = sup [[(c&(t)y_o(t)--¢ao(t)y_o(t))Tl[2

II(¢_(t)y.(t) - ¢_(t)y'_(t))Tl[2
/3z = sup

* II(ya(t)- Y'o(t))T ll2
(10.40)

k = fllfl3 < 1. (10.41)

Expression (10.39) leads to

fl_(/%, +/_2) < a.(1 - k) (10.42)

which on combining with (10.41) yields

/3_ 5 a. (10.43)

Hence from lemma 4, it now follows that inequality (10.43) is a suffi-

cient condition for guaranteeing that II(y=(t) - Y=(0)TII2 < cr= whenever

II(w=(0 - W.o(t))TIb _ _,..
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Note that inequality (10.43) assures L2 tracking in the sense of spheres

with respect to the input sphere radius f_ and the output sphere radius

am. Since the design parameters are chosen to satisfy conditions of theorem

1, we know that the original system is L_ - stable. Hence, we now use the

L2 - stability condition (10.43) to bound the Y_,_ tracking error.

Consider

(/0T- lw,_(t)W,,o(t)]2dt)m

= (ffUIw(0- wo(t)I_dt)m

< IIw(0-Wo(t)IIoo[_(J°T- 1)] 1/2
za

II(w.(0-W.o(t))TII_

EIIw(t)- Wo(Oll_ _ f,,, (10.44)

[ 1 ( 2aTwhere E __ L_e - 1)] 1/2. Similarly, the relation between the variation

of the output ya(t) E L2_ in (10.10) and y E Loo in (10.8) is

II(yo(t)- Yoo(t))TII2< EIIy(t)- yo(t)IIoo< o_,,. (lO.45)

Since we want the output of system (10.8) (measured by the Lo_ norm) to

lie in the output sphere []y(t) - yo(t)[]oo _< fo whenever the input w(t) is in

the input sphere Iiw(t)-Wo(OIl_ _<_,, from (10.44) and (10.45), we obtain

f,i = Efli and (10.46)

a,_ = E fo. (10.47)

Substituting (10.46) and (10.47) in (10.43), we obtain

Efo
fl < El, + E for3 + & (10.48)
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which is a sufficient condition for guaranteeing that

[[w(t)- wo(t)[[oo _</3, _ [[y(t)- yo(t)[[oo _< flo •

10-22

(10.49)

Because w(t) in (10.49) consists of both the reference r(t) and the distur-

bance d(t), by letting ro(t) and the null vector denote the nominal reference

input and the nominal disturbance respectively, we compute

IIw(t)-wo(t)ll_ -II d(t)-O IIoo

< tit(t) - ro(t)ll_ + tld(t)ll_ < Z, (10.50)

since the reference input r(t) is prespecified to be in the sphere lit(t) -

ro(t)l[oo < Z_;, we let Z_ = Z_ + [Id(t)lloo. Inequality (10.48) can then be

rewritten as

_31 <_ E(13_, + [[d(t)[[oo ) + Et3oj33 + j32 (10.51)

which is a sufficient condition for guaranteeing that

Ilr(t) - ro(t)lloo _ D_, _ IlY(t) - yo(t)llo_ _ Go (10.52)

Remark 3:

(i) In computing the upper bound on fll specified by (10.51), a value

for E is needed. E depends on the truncation time T. The system

settling time, for instance, can be used for T.

(ii) _1 is the Hoo norm of the linear operator CzFB_. _1 depends on

the gains K1, Kc, H and the chosen positive number a.

(iii) j52,/_a and/_4 can be computed as follows.
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= sup ]](¢_(t)y_o(t) - ¢_o(t)y_o)(t)Tll2
_fe_

<_ [[(e"t)Tl[2sup [[(¢(Yo(0,7,0 -- ¢o(Yo(O, O)TIIz

= Esup [[(¢(yo(t),'v,t)-¢o(Yo(t),t))T[h

-- E/_4 (10.53)

= sup
i

= sup

]](¢.(t)yo(t) - ¢o(t)y'_(t))r]]2
'tII(y_(0- y_( ))TII_

II(e_'[¢(y(t), 7, t) - ¢(y' (t), "7, t)])Tll2

• tl[e_'(y(t) - y'(t))lTl[z
= sup I11%¢]_11=.

m

(10.54)

Since ¢ E [or,/3], V 3' E -,_ and the bounds ct,/3 axe known apriori, we can

simplify the computation of the inequality (10.51) by letting ¢o(Yo(t), t) =

![[a +/3[[Yo yielding2

/_,__(11/3- '_ll)ll(Yo(0)T IIz • (10.55)
2

Thus, the sufficient condition guaranteeing

IIr(Q - ro(t)ll_ </L, _ IlY(O- yo(t)ll_ < ¢L (10.56)

can be expressed as

_O

/_1_<_,, + IId(011_ +/_o/_ + _4 (lO.57)

Remark 4: Although the parameters a and T do not explicitly appear in

the inequality (10.57), the selection of these two parameters does affect it

implicitly, since 31 depends on a > 0 and f13, f15 depends on T. To obtain



CHAPTER 10. PROBLEM FORMULATION 10-24

less conservative results, a and T can be chosen as small as possible. The

smaller the values of a and T are, the smaller are the value of fll and that

of &, r4 in the inequality (10.57).

10.5 Computation of the Gains K and H

The sufficiency criterion (60) of theorem 2, essentially separates the uncer-

tain effects from the nominal linear portion L = CzFB_ (fl, = ][LIIH_o ).

Thus, the design problem now reduces to obtaining the state feedback gain

matrices K = [K1,Kc] and the observer gain matrix H such that fll is

close to its threshold value. To select K and H, we consider the follow-

ing hypothetical linear system representing the transfer function matrix

C_(sI - A,)-IB_. That is:

it(t) = A_z,(t) 4- B_w(t)

y(t) = C_zz(t)

(10.5s)

where

An -_

Ca _---

aI 4- A BKc BK1

-B¢C aI4-Ac 0

HC BK¢ aI + A + BK_ - HC

COO].

, Bz -

0 G

B_ 0

0 0

By letting

x,(t)

_,(t)
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Eqn. (10.58) can be expressed as the combination of state dynamics :

= + u_(t)
_ct(t) -BcC aI + Ac x_t(t) 0

[oo1+ w(0 (10.59)
B_ 0

r

y(t) = [C 0]_ xl(t) (10.60)
[ ,,o,(_)]

and of the full order observer for estimating the state xt(t):

_l(t) = (aI + A)_(t) + But(t) + H(y(t) - _(t)) (10.61)
[" 1

:_(t) Cxt(t), u/(t)= [K1Kc] ] xt(t) _ •

[ Jxct(_)

In order to adjust the H_-norm of the hypothetical, linear system

Cz(sI-An)-lBz by proper choice of K1, Ke, and H we can use any

Hoe-minimization algorithm available in the literature [Doyle et al (1989),

Grimble (1988), Postlethwaite and Young (1988)]. The specific algorithm

used in the present work was developed by the authors of the present paper,

details of which can be found in Hwang et al (1990).



Chapter 11

An Algorithm for Hcc

Optimality

The objective of the algorithm given below is the determination of the con-

troller and the observer gain matrices so that the closed loop system remains

stable and ]lTwy I]Hoo ---_V, where v is the threshold value of the Hoo-norm

of the transfer function matrix Twy from the hypothetical exogenous input

w(t) to the hypothetical output y(t) of Eqn. (61). For a specific weighting

p on the hypothetical control inputs ut(t), the Hoo-optimal control gains

are determined by invoking theorem 3 and the existence conditions given

below.

Theorem 3: The Hoo-optimal control law for the weighted hypothetical

c°ntr°lled°utputvect°r I Y(t) ] °fsystem(61)isgivenbyput(t)

[K1 K_] =- ka
0

11-1
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and H = -(I- hook1) -1 hoo[C 0] T

where kl is the positive definite solution of the algebraic Riccati equation

+ kl

aI+A-BcC

F

kl+kl [ aI+A 0

L-BcC aI + Ae

0Bc 0

°] TaI + Ac

o][0Be 0

C 0] =0

kl

+ [ c (11.1)

and hoo is the positive definite solution of the following Lyapunov equation

[aI + A]hoo + ho_[aI + A] T + GG T ---- 0. (11.2)

Proof." The proof is omitted since it appears in Hwang et al (1990).

The necessary and sufficient conditions for the existence of the Ho_-

optimal control law given in theorem 3, such that []Twy [[Hoo < Y, are:

(i)

aI+A 0 J 0 G 0 G B B

]
-BeC aI+Ae Be 0 Be 0 0 0

T

i i [ai+ o]- C 0 CO
-BcC aI + Ac

(A + aI) T 0 ] C dom(Ric)-GG T -(A + aI)

and
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(ii)

(iil)

kl >0 and hoo >0

A,_a_(klh_) < v 2

where A,_a:_(-) is the maximum eigenvalue of the matrix (.).

A complete treatment of the above existence conditions can be found in

Doyle et al (1988).

The algorithm based on the existence conditions and theorem 3 can now

be stated as follows for determining the relevant gain matrices. Henceforth,

II-_WwyIIH__it is assumed that the design objective is < 1 or equivalently

II'_wyllHoo < 1, for insuring the existence of the g_o-optimal control law.

This transformation can be accomplished by scaling w(t) and/or y(t) such

that the Hoo-norm of Twy is always less than or equal to 1. This scaling of

the disturbance and controlled output terms requires the following trans-

formation of the matrices involved in the hypothetical system dynamics:

We also define:

IITwyllH._-- _, (11.4)

to facilitate the description of the algorithm below:

Step 1: Select the (control) weight p and an initial value for v. The initial

•-Aue of _ is set at IITwylIH_, though alternate choices are acceptable

[seeHwang et al (1990)].
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Step 2: Apply the aforementioned scaling and solve the Riccati equation

(65) and the Lyapunov equation (66) for the scaled system.

Step 3: Evaluate the gains kl and hoo corresponding to the unscaled sys-

tem and calculate ]]Twy ]]Hoo, i.e. the value of 6.

Step 4: If kl _> 0 and hoo _> 0, then go to Step 5, or else,

if _ _> v, then decrease p and repeat Steps 2 through 4,

or else,

set u = _ and repeat Steps 2 through 4.

Step 5: If Am_,(klh_) < 1, then go to Step 6, or else,

if 6 > u, then decrease p and repeat Steps 2 through 4,

or else,

set u = _ and repeat Steps 2 through 4.

Step 6: If _ < v, then set v -- 6 and proceed to Step 7, or else,

ifp_<e,easmallnumber, thenset v = _ and go to Step S,

or else,

decrease p and repeat Steps 2 through 6.

Step 7: If v is less than the minimum value of v evaluated so far then

repeat Steps 2 through 7 with a smaller value of v, or else proceed to

Step 8.

Step 8: Form the Hoo-optimal controller gains K1, Kcand the observer gain H.

Moreover, IITwy]lHoo _ v.
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Remark 5: The above algorithm is organized in such a way that it is

versatile enough to accommodate other design specifications in addition to

minimizing the Hoo-norm of Twy.
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Nonlinear Synthesis Procedure

Based on the Hoo-optimal control law given in the previous section, the

controller gain matrices K1, Kc and the observer gain matrix H, needed

for synthesis can be obtained for Lu_e type nonlinear systems through a

step by step design procedure proposed below. This leads to a systematic

placement of eigenvalues for the QPP problem for guaranteeing Loo tracking

in the sense of spheres for Lu_e type systems.

12.1 Design Procedure

First compute the threshold

m = (12.1)
B_, + I[d(t)[[oo + _5o/_a + Ha

from the given specifications 80, _i, lid(*)lloo, the nonlinear function ¢(t)

and assumed initial guesses for a and T. m gives an initial upper bound

on IILIIH_ --[IC_(sI- A,,)-'B, IIH_.

12-1
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Then use the Hoo - algorithm given previously in section IV to select

a set of gain matrices K = [K1 Ke] and H so that IILIIH_ < m. A new

value of T can also be found by adopting the settling time of the closed-

loop system. With these values of K = [K1 Ke] and H, we can determine

a > 0 to satisfy the conditions of the circle criterion. With this newly

found value of a and T, we can recompute the updated value rnl of m.

If the updated value ml _ ill, then the design is complete. If not the

procedure is repeated with the newly found values of a and T. We have

found the following step by step procedure to be effective for executing the

design methodology developed in chapter 10.

Step 1: Select values for a and T, and compute the threshold rn.

Step 2: Select p and use the Hoo search algorithm

until/_1 = ]lL]]Hoo <_ rn and determine K (= [K1, Kc]) and H.

Step 3: Form the closed-loop system. Adapt T to the system settling time

and repeat step 1 to update m until T is close to the system settling

time.

If fll > m, decrease p and repeat step 2.

Step 4: If w _ Ha(jw) satisfies the circle criterion, go to step 5.

otherwise adjust a and go to step 1.

Step 5: Repeat steps 2 - 4

until fll is close to but lower than the threshold m. Then form the

gain matrices K and H.
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Two examples that utilize the above step by step procedure for executing

the design method axe given in the next chapters.



Chapter 13

A Simple Example

Consider the uncertain, nonlinear system:

_k(t) = Ax(t) + Bu(t) + Gd(t) + f(y(t),Am, t)

_(t) = Cx(t)

(13.1)

with

[01] [0]A = , B= , C=[1 0], G=
0 -1 1

= [0]{2y(t)+(l"5:l:Am)y(t)sint}l
f(y(t),Am,t)

[:11

where Am E [-0.05, 0.05] is the uncertainty, x(t) E R 2 are the states, y(t)

is the output and d(t) is the external disturbance.

13-1
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13.1 Design Objective and Performance Re-

quirements

The output of the above system is required to track a nominal sinusoidal

input to(t) = sin 5t within a sphere of radius 0.2 for any reference input

r(t) in a sphere of radius 0.1 centered at the nominal input, i.e.,

II_(_)- _o(_)lloo< 0.1 _ II_(t)- yo(t)lloo< 0.2 (13.2)

in the presence of the disturbance d(t) and the plant uncertainty f(y(t), Am, t).

13.2 Design Execution

To assure good steady state tracking, a servo compensator So, denoted by

(Ac, B_, Co), can be chosen as :

xo(,) =

w(_) =

with the tracking error e(t) = (r(t) - y(t)), and [sI- Acl = s 2 + 25 = 0,

which is the internal model of the signal sin 5t, yielding

[01] [0A_= , B_= , C_=[1 0] (13.3)
-25 0 1
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With Sc chosen as above, the following augmented nonlinear plant is ob-

tained by combining Sc and the plant model (13.1).

0 1 0 0

0 -1 0 0

0 0 0 1

-1 0 -25 0

xo(t) =

01
1

xo(_)+
0
l

L°

_(,)+

0 0

0 0.1
w(t) + f,(y(t),Am, t)

0 0

1 0

= A_x_(t) + B_u(t) + G_w(t) + f,(y(t),Am,t) ,

v(t) = [1 0 0 0]x_(t),

where

xo(t) - xc(t) ' fl(v,_xm,t) = w(t) =o d(t)
(13.4)

13.3 Computation of Gains K and H

Invoking the Hoo-minimization algorithm described in Part I with p -

0.0001, a = 10 -s, and

w, = Sc, ut(t) = Kxa(t) (13.5)

the controller gain matrices K1, Kc of the nonlinear controller, specified by

Eqn. (9) of Part I and the observer gain matrix H of the nonlinear observer
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specified by Eqn. (8) of Part I, are found to be

Kx = [-299.9 - 23.5]

Ke -- [2506.2 1937.1]
1

H = -0.0955 /

-0.0046 J
With the above observer gain matrix H and the controller gain matrix K,

the closed-loop system becomes

i(t) = A.z(t) + B_w(t) +Bz¢(y(t),Am, t) (13.6)

y(t) = czz(t),

where

kz

BZ -"

Cz

0. 1. 0. 0. 0. 0.

0. -1. 2506.2 1937.1 -299.9 -23.5

0. 0. 0. 1. 0. 0.

-1. 0. -25. 0. 0. 0.

0.1 0. 0. 0. -0.1 1.

0. 0. 2506.2 1937.1 -299.9 -24.5

0. 0.

0. 0.1

0. 0.

1. 0.

-0.0955 0.

-0.0046 0.

1.0.0.0.0.0.

, _.(*)-

, and

x(t) ] ,
xc(t)
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[° 1¢(u(t),,xm, t) = (Am u(t) ,i,u) .
10.

It can be easily verified that the nonlinear element ¢(y(t), Am, t) belongs

to the sector [-0.5 0.5].

By selecting T=0.5sec (the settling time), the Nyquist diagram w _-*

H_(jw) satisfies the circle criterion, as shown in Figure 13.1, confirming

that the closed-loop is Lo_ stable.

With the above choice of gains K = [K1, Kc] and H, the right hand side

of the inequality (39) of Part I becomes

Zo
rr/

0.2
= = 1.61807

0.1 + 0.2 • 0.02727 + 0.05 * 0.363

and the computed value of /_1 is 1.61454, which is clearly less than the

threshold m. The resulting nonlinear control law is u(t) = Kl_c(t) +

Kcx_(t) - f_o(y(t),t), f_o(y(t),t) = 2 y(_)+ 1.5 _(t) sin t. The above

control law is optimal in the sense that the value of _1 is very close to

its upper bound. To confirm the validity of the theorem, the closed-loop

system of Eqn. (13.6) is simulated with the following results.

13.4 Computer Simulation Results:

The actual reference r(t) is assumed to vary from the nominal reference

input to(t) with an amplitude of to(t) - 0.1 for a period of 2 seconds (from

0. seconds to 2.0 seconds). The histories of to(t) and r(t) are shown in
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IM

/

/

/

-2

/
l°°

\

%_

_1 =Re

_,_ /-" critic_! disc, D(a, ,e)

Figure 13.1: The Nyquist Diagram of H,(jw) and the Critical Disc D(a, fl).
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Figure 13.2. Thus, Hr(t) - ro(t)llo_ = 0.1. Let Am = 0.05, and d(t) = O.

The nominal reference to(t), and the actual output y(t) are shown in Figure

13.3. As expected with the proposed nonlinear control law, as expected,

the closed-loop system has low sensitivity to both the external disturbance

and uncertainties. This is confirmed by Figure 13.4, showing that the

actual output y(t) is close to the nominal one yo(t). Figure 13.5 shows that

IlY - Yolloo is less than 0.094. Clearly, good tracking can be achieved by

using the proposed control law, u(t), whose control histories are shown in

Figure 13.6.

To check the validity of the design criterion another reference, r(t) "--

to(t) ÷ 0.1 sinlOt, was simulated. The histories of to(t) and r(t) are shown

in Figure 13.7 with Am = 0.05, and d(t) = 0. The nominal reference ro(t),

and the actual output y(t) are shown in Figure 13.8. Figure 13.9 shows that

the tracking error Ily(t)- yo(t)llo_ is less than 0.16, which is in the desired

output sphere of Ily(t) - yo(t)[l_ < 0.2. The resulting control history is

shown in Figure 13.10.
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Figure 13.2: Reference r(t) and Nominal Reference to(t).
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0.0

0

Figure 13.3: Output y(t) and References ro(t) vs Time t.
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Figure 13.4: Output y(t) and Nominal Output yo vs Time t.
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Figure 13.5: Tracking Errors vs Time t.
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o(t)
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Figure 13.6: History of Control Input u(t).
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Figure 13.7: Reference r(t) and Nominal Reference ro(t).
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Figure 13.8: Output y(t) and References ro(t) vs Time t.
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Figure 13.9: Tracking Errors vs Time t.
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Figure 13.10: History of Control Input u(t).



Chapter 14

Two-Degrees-of- Fre e do m

Robotic Manipulator

Now, we consider the realistic problem of a two-degrees-of-freedom manip-

ulator studied in Corless et al (1984). This arm can extend or retract and

rotate about an axis as shown in Figure 14.1, where s is the distance be-

tween the point load M and the pivot point O. (xl(t),x2(t)) denotes the

position of the mass center C of the arm in polar coordinates. V_(t), V2(t)

axe the force and the torque required to ensure that the point load M tracks

a prescribed desired motion. (YAI(t), YA2(t)) denotes the actual position of

the load M in cartesian coordinates. /z and M are the arm and load mass

respectively. J1 is the mass moment of inertia of the mechanism about the

axis through O; J_ is the mass moment of inertia of the arm about the axis

through C. a is the distance from C to the load M. The dynamic equations

governing the motion of the manipulator can be written as

(# + M)_,(t) - R(xl(t),M)k_(t) = Vl(t) (14.1)

14-1
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where

I(xl(t),M)i_2(t) + 2R(xl(t),M)kl(t)ic2(t) = V2(t)

R(x,(t),M) = pxl(t) + M(x,(t) + a)

I(xl(t),M) = J1 + ,12 + #x_(t) + M(x,(t) + a) 2 .

14-2

By defining

u(t) [ u_(t) ], x(t)u_(t)

_l(t) = (it+ M)-'Y,(t)

_(t) = (Z(x,(O,M))-'V£t)

as the new input variables, and

A,(t) =

A_(t) =

as the modified nonlinear functions with

Xl(t)

_(t)

x3(t)

. x,(t) ]

the system (14.1) can be rewritten in the following state equation form:

/¢(t) = Ax(t) + Su(t) + Gd(t) + f(x(t),M,t) (14.2)

y(t) = Cx(t)

(It --[-M) -1R(x,(t),M)x_(t)

-(I(x,(t),M))-'2R(x,(t),M)x3(t)x,(t)

and f(x(t),M,t)=

0

0

A,(t)

As(t)

Assume that all the parameters are known exactly except the payload

mass M, which is subjected to known bounds, 0 < M < M _ M, denoted

'(__M+_)).as M e [M,M]. Let M ° be the nominal payload mass (= 7
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_°A 2

t -/',

Figure 14.1: Robot Manipulator of Two-degree-of Freedom.
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with

A

001

0 0 0

0 0 0

0 0 0

0

1

0

0

B _...

1 0 0 0]
C = , G=

0 1 0 0

0o1

0 0

0 0

0.1 0

0 0.1

where u(t), x(t), y(t), d(t) and f(.) are respectively the control, the state,

the output, the disturbance and the nonlinear uncertain element of the

system of Eqn. (14.2).

Parameter values used for computations are M = 45 kg, M = 55 kg,

J1 = ./2 = 100 kg.rn 2 and a = 1 m, with uncertain mass M E [45kg, 55kg].

14.1 Design Objective and Performance Re-

quirements

Suppose the payload M is required to track the semi-circle described by

[YAI(t ),YA:(t )]

[YAI(t),Y_(t)]

= [Orn, l.5m], t_<O

= [(xl(t) + a)cos x_(t) m,(x,(t) + a)sin _(t) m]

0 < t _< 3.1416 sec.

= [Om,-1.5m], t>__3.1416sec.
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In terms of polar coordinates the above desired motion, becomes

14-5

[_,(t), y,2(t)]

[_l(t), y,2(t)]

= [0.5 m,O rad],t < 0 sec.

= [0.5 rn, t rad],O < t < 3.1416 sec.

= [0.5 m, 3.1416 rad], t > 3.1416 sec.

where y_l(t), y_2(t) represent the desired motion of the system output y(t)(=

[y_(t),y2(t)] T) in Eqn. (14.2).

The performance requirement is that

IIr(t)- ro(t)ll_o= 0 _ IlY_(t)- Yo,(t)ll__ 0.14, i = 1,2, (14.3)

where the nominal reference input ro(t)= [y,,(t),y_z(t)] T.

14.2 Design Execution

For steady-state tracking of the desired motion, a servo-compensator Sc

denoted by (Ac, Be, Co) is chosen as :

x_(t) = A_x_(t) + Bee(t)

yc(t) = C_x_(t),

where the tracking error e(t) = (r(t)- y(t)),

0 0

0 0

0 0

0

1 ,

0

BC

1 0

00

0 1

, Cc =
1001010

(14.4)
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The above servo-compensator Sc is chosen to realize the internal model,

which is specified by the desired motion, so that the desired trajectories

can be followed. With Sc chosen as above, the augmented nonlinear system

becomes

and

y(t)

[ ] [B]I0o]= A o Xo(0+ u(,)+
-B¢C A, 0 B_ 0

= Aoxo(t) + Bou(t) + Gow(t) + fl(y(t),M,t) ,

[r(t) ]= [c 0]Xo(t)= Coxo(t), wherew(t) = d(t) '

fl(x(t)'M't)=[ f(x(t)'M't)]0

•v(*)+ fl(x(*),M, _)

(14.5)

Now we invoke the design procedure outlined previously in Part I.

14.3 Computation of the gains K and H

Choosing

[ Pu'(t) ] Ws-S_, e(t)=r(t)-y(t) (14.6)"(t) - W,e(t)

where u,(t) = Kxo(t), with p = 0.001 and a = 10 -9, the state feedback

gain matrix K = [K1

yielding :

g

Kc] and the observer gain matrix H are computed,

-202.9 0. - 20.2 0. 1020.4 0. 0. |

1

J0. -108.4 0. -14.7 0. 1005.9 466.9
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n

-0.4571 0.0000

0.0000 -0.4501

-0.1022 0.0000

0.0000 -0.1007

14.4 Formulation of the Closed-loop System

The closed-loop system can now be expressed as

_.(t) = Azz(t) + Bzw(t) + Bz¢(x(t),M,t) (14.7)

y(t) = C,z(t),

where A,, B_, and Cz are shown in Table 14.1, and

¢(x(t),M,t)

fl(x, M,t)

f,o(x,t)

0

0

10

0

0

0

0

10

(fl(x,M,t)- flo(x,t))

f_2(t) -(I(xl(t),M))-'2R(xl(t),M)x3(t)x4(t)

[ f2o_(t) ] =_ [ (# + M°)-IR(xl(t),M°)x](t)- f_o_(,) -(I(x,(t),M°))-a2R(xa(t),M°)xa(t)x4(t)

with the nominal mass M ° = 50 kg.

Remark: Note that rio(X, t) is the well known computed torque.

With a -- 10 -9 and T = 3.1416 sec, Figures 14.2 and 14.3 show that

the Nyquist locus w _-+ Ha(jw) satisfies the MIMO circle criterion,-proving

that the closed-loop system is Lo_ stable.
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IM

2.,

I..

Figure 14.2: Satisfaction of the Circle Criterion (for Sector = [al, /31]).
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Figure 14.3: Satisfaction of the Circle Criterion (for Sector = [a2, /32]).
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The numerical values of the parameters in inequality (39) of Part I are

computed as follows:

= sup I[[Vy¢(y(t),M,t)]w[[2
ME_

= i1[_1 o¢_1Oyl]T[I_
= 0.018

84 -- sup l](¢(yo(t),M,t)--(¢o(Yo(t),t))T][2 = 0.056 .
ME_

(14.8)
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TABLE 14.1 The Closed-Loop System Matrices of the Robot

Manipulator

A, (11 x 11 matrix) =

103 *

Columns 1 thru 8

0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0204 0.0000 0.0000 -0.2029

0.0000 0.0000 0.0000 0.0000 0.0000 1.0059 0.4669 0.0000

-0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000

0.0000 -0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0005

0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0001 0.0000 0.0000 0.0000 1.0204 0.0000 0.0000 -0.2030

0.0000 0.0001 0.0000 0.0000 0.0000 1.0059 0.4669 0.0000

Columns 9 thru 11

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 -0.0202 0.0000

-0.1084 0.0000 -0.0147

0.0000 0.0000 0.0000
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TABLE 14.1 (cont.)

14-13

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0010 0.0000

-0.0005 0.0000 0.0010

0.0000 -0.0202 0.0000

-0.1085 0.0000 -0.0147

Bz (11 x 4 matrix) =

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000

-0.4571 0.0000 0.0000 0.0000

0.0000 -0.4501 0.0000 0.0000

-0.1022 0.0000 0.0000 0.0000

0.0000 -0.1007 0.0000 0.0000
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TABLE 14.1 (cont.)

14-14

Cz (2 x 11 matrix ) --

Columns 1 thru 8

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Columns 9 thru 11

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

Thus, the threshold m becomes

flo
m ---

0.14

O. + 0.14 * 0.018 + 0.056
= 2.3923,

and the computed value of 31 is 2.34285, which clearly satisfies the in-

equality (39) of Part I. The resulting nonlinear control law is u(t) ---

K1R(t) + Kcxc(t)-rio(t). The above control law is optimal in the sense that

the value of 31 is close to its upper bound. Fi-om theorem 2 of Part I, the

closed-loop system is now guaranteed to have the required tracking perfor-

mance. Effectiveness of the above controller is confirmed by the following

transient response simulation results.
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14.5 Computer Simulation Results:

Let d(t) be an impulse disturbance. With the lower bound mass M = 45 kg,

the plant outputs y(t) are shown in Figure 14.4, which shows that the plant

outputs y_(t) and y_(t) closely track the reference inputs rl(t) = 0.5 m and

r2(t) - t radians respectively. The maximum tracking errors between the

plant outputs and the nominal outputs are 0.006 rn and 0.0015 radians.

The errors are relatively small in comparison to the imposed output sphere

radius/_o = 0.14. The superiority of the proposed control law for distur-

bance rejection and its low sensitivity to uncertainties can clearly be seen

from the trajectories of the masses M = 45 kg, M = 50 kg, and

M = 55 kg in the Cartesian coordinates, which are shown in Figure 14.5.

The histories of the required control force V_(t) and the torque V:(t) for

M -- 45 kg are shown in Figure 14.6 along with those for the nomi-

nal mass M -- 50 kg. Due to the desired high-speed tracking, it is not

surprising that the required control inputs are relatively high.
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Figure 14.4: The Plant Output y(t) vs Time t.
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Figure 14.5: Output y(t) in Cartesian Coordinates (YA,, }_42).
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Figure 14.6: Histories of Control Force I_(t) and Torque V2(t).
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Summary and Conclusions

In this paper the problem of tracking in the sense of spheres, for a class

of multivariable nonlinear uncertain systems of the Lu_e type, is consid-

ered. Design criteria developed, extend the circle criterion developed in

Jayasuriya & Kee (1988) for the L2 - problem to Loo - tracking. Controller

synthesis is reduced to a quantitative pole placement scheme which is sub-

sequently solved using the Ho_-formalism. The Hoo-formalism provides a

framework for incorporating bandwidth issues, so crucial in any physical

implementation of any resulting control law. However, in light of the op-

erator methods used in the problem formulation, resulting designs can be

somewhat conservative. This, is expected since any Loo-function within the

given input sphere is admissible.

Future work will consider alternate approaches for reducing the conser-

vativeness of the proposed design criterion. Also, it would be very useful to

have a complete characterization of the worst input lying in a given input

sphere for the synthesized closed-loop system. The worst input here is the

15-1
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input which leads to the maximum error in the actual output as measured

with respect to the nominal output. Criteria for synthesizing controllers

for more general nonlinear system are also needed. For example, it would

be appropriate to study polynomial systems, discontinuous systems and

systems in which the control does not enter the state equation in a linear

way.

Two examples for the synthesis methodology presented in Part I of this

paper are given. The simulation results confirm the effectiveness of the

proposed design methodology. The Hoo-framework used in the synthesis

procedure can be adapted to incorporate bandwidth limitations. The lat-

ter can be accomplished by adjusting the weighting p and the filter matrix

W, needed in the Hoo-algorithm. It should be emphasized, however, that

incorporating such bandwidth limits may result in having to relax the track-

ing error specifications. The relationship between the tracking error and

the bandwidth is implicitly given in the design criterion (60) developed in

Part I of the paper. Qualitatively, a large bandwidth would yield a small

Hoo-norm and vice-versa. Moreover, for a given bandwidth limitation, a

controller can be found, whenever the minimum Hoo-norm with an appro-

priate set of p and W,, is smaller than the threshold value m (see Eqn.

(60) of Part I). If this is not the case the same inequality can be used to

ascertain a new output sphere size.
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